Gordon Derek, Haynes Chad, Johnnidis Christopher, Patel Shailendra B, Bowcock Anne M, Ott Jürg
Laboratory of Statistical Genetics, Rockefeller University, Box 192, 1230 York Avenue, New York, NY 10021, USA.
Eur J Hum Genet. 2004 Sep;12(9):752-61. doi: 10.1038/sj.ejhg.5201219.
Two issues regarding the robustness of the original transmission disequilibrium test (TDT) developed by Spielman et al are: (i) missing parental genotype data and (ii) the presence of undetected genotype errors. While extensions of the TDT that are robust to items (i) and (ii) have been developed, there is to date no single TDT statistic that is robust to both for general pedigrees. We present here a likelihood method, the TDT(ae), which is robust to these issues in general pedigrees. The TDT(ae) assumes a more general disease model than the traditional TDT, which assumes a multiplicative inheritance model for genotypic relative risk. Our model is based on Weinberg's work. To assess robustness, we perform simulations. Also, we apply our method to two data sets from actual diseases: psoriasis and sitosterolemia. Maximization under alternative and null hypotheses is performed using Powell's method. Results of our simulations indicate that our method maintains correct type I error rates at the 1, 5, and 10% levels of significance. Furthermore, a Kolmorogov-Smirnoff Goodness of Fit test suggests that the data are drawn from a central chi2 with 2 df, the correct asymptotic null distribution. The psoriasis results suggest two loci as being significantly linked to the disease, even in the presence of genotyping errors and missing data, and the sitosterolemia results show a P-value of 1.5 x 10(-9) for the marker locus nearest to the sitosterolemia disease genes. We have developed software to perform TDT(ae) calculations, which may be accessed from our ftp site.
由斯皮尔曼等人最初开发的传递不平衡检验(TDT)的稳健性存在两个问题:(i)缺失亲代基因型数据,以及(ii)存在未检测到的基因型错误。虽然已经开发出了对(i)和(ii)项具有稳健性的TDT扩展方法,但迄今为止,对于一般家系,还没有一个对两者都具有稳健性的单一TDT统计量。我们在此提出一种似然方法,即TDT(ae),它对一般家系中的这些问题具有稳健性。TDT(ae)假设的疾病模型比传统TDT更一般,传统TDT假设基因型相对风险的乘法遗传模型。我们的模型基于温伯格的工作。为了评估稳健性,我们进行了模拟。此外,我们将我们的方法应用于来自实际疾病的两个数据集:银屑病和谷甾醇血症。在备择假设和原假设下的最大化使用鲍威尔方法进行。我们模拟的结果表明,我们的方法在1%、5%和10%的显著性水平上保持了正确的I型错误率。此外,柯尔莫哥洛夫-斯米尔诺夫拟合优度检验表明,数据来自自由度为2的中心卡方分布,这是正确的渐近原分布。银屑病的结果表明,即使存在基因分型错误和数据缺失,有两个基因座与该疾病显著相关,而谷甾醇血症的结果显示,最接近谷甾醇血症疾病基因的标记基因座的P值为1.5×10^(-9)。我们已经开发了执行TDT(ae)计算的软件,可从我们的ftp站点获取。