Suppr超能文献

一种物理参考状态统一了蛋白质折叠和结合中源自结构的平均力势。

A physical reference state unifies the structure-derived potential of mean force for protein folding and binding.

作者信息

Liu Song, Zhang Chi, Zhou Hongyi, Zhou Yaoqi

机构信息

Howard Hughes Medical Institute Center for Single Molecule Biophysics, Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA.

出版信息

Proteins. 2004 Jul 1;56(1):93-101. doi: 10.1002/prot.20019.

Abstract

Extracting knowledge-based statistical potential from known structures of proteins is proved to be a simple, effective method to obtain an approximate free-energy function. However, the different compositions of amino acid residues at the core, the surface, and the binding interface of proteins prohibited the establishment of a unified statistical potential for folding and binding despite the fact that the physical basis of the interaction (water-mediated interaction between amino acids) is the same. Recently, a physical state of ideal gas, rather than a statistically averaged state, has been used as the reference state for extracting the net interaction energy between amino acid residues of monomeric proteins. Here, we find that this monomer-based potential is more accurate than an existing all-atom knowledge-based potential trained with interfacial structures of dimers in distinguishing native complex structures from docking decoys (100% success rate vs. 52% in 21 dimer/trimer decoy sets). It is also more accurate than a recently developed semiphysical empirical free-energy functional enhanced by an orientation-dependent hydrogen-bonding potential in distinguishing native state from Rosetta docking decoys (94% success rate vs. 74% in 31 antibody-antigen and other complexes based on Z score). In addition, the monomer potential achieved a 93% success rate in distinguishing true dimeric interfaces from artificial crystal interfaces. More importantly, without additional parameters, the potential provides an accurate prediction of binding free energy of protein-peptide and protein-protein complexes (a correlation coefficient of 0.87 and a root-mean-square deviation of 1.76 kcal/mol with 69 experimental data points). This work marks a significant step toward a unified knowledge-based potential that quantitatively captures the common physical principle underlying folding and binding. A Web server for academic users, established for the prediction of binding free energy and the energy evaluation of the protein-protein complexes, may be found at http://theory.med.buffalo.edu.

摘要

从已知的蛋白质结构中提取基于知识的统计势被证明是一种获得近似自由能函数的简单有效方法。然而,尽管氨基酸之间相互作用的物理基础(氨基酸之间的水介导相互作用)相同,但蛋白质核心、表面和结合界面处氨基酸残基的不同组成使得无法建立一个统一的用于折叠和结合的统计势。最近,理想气体的物理状态而非统计平均状态被用作参考状态来提取单体蛋白质氨基酸残基之间的净相互作用能。在这里,我们发现这种基于单体的势在区分天然复合物结构和对接诱饵方面比现有的基于二聚体界面结构训练的全原子基于知识的势更准确(在21个二聚体/三聚体诱饵集中成功率为100%,而后者为52%)。在区分天然状态和Rosetta对接诱饵方面,它也比最近开发的通过取向依赖氢键势增强的半物理经验自由能函数更准确(基于Z分数,在31个抗体 - 抗原及其他复合物中成功率为94%,而后者为74%)。此外,单体势在区分真实二聚体界面和人工晶体界面方面成功率达到了93%。更重要的是,无需额外参数,该势就能准确预测蛋白质 - 肽和蛋白质 - 蛋白质复合物的结合自由能(与69个实验数据点的相关系数为0.87,均方根偏差为1.76千卡/摩尔)。这项工作朝着一个统一的基于知识的势迈出了重要一步,该势能够定量捕捉折叠和结合背后的共同物理原理。供学术用户使用的用于预测结合自由能和评估蛋白质 - 蛋白质复合物能量的网络服务器可在http://theory.med.buffalo.edu找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验