Suppr超能文献

具有缺失连续和有序分类数据的非线性结构方程模型的贝叶斯模型比较

Bayesian model comparison of nonlinear structural equation models with missing continuous and ordinal categorical data.

作者信息

Lee Sik-Yum, Song Xin-Yuan

机构信息

Department of Statistics, The Chinese University of Hong Kong.

出版信息

Br J Math Stat Psychol. 2004 May;57(Pt 1):131-50. doi: 10.1348/000711004849204.

Abstract

Missing data are very common in behavioural and psychological research. In this paper, we develop a Bayesian approach in the context of a general nonlinear structural equation model with missing continuous and ordinal categorical data. In the development, the missing data are treated as latent quantities, and provision for the incompleteness of the data is made by a hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm. We show by means of a simulation study that the Bayesian estimates are accurate. A Bayesian model comparison procedure based on the Bayes factor and path sampling is proposed. The required observations from the posterior distribution for computing the Bayes factor are simulated by the hybrid algorithm in Bayesian estimation. Our simulation results indicate that the correct model is selected more frequently when the incomplete records are used in the analysis than when they are ignored. The methodology is further illustrated with a real data set from a study concerned with an AIDS preventative intervention for Filipina sex workers.

摘要

缺失数据在行为和心理学研究中非常常见。在本文中,我们在具有缺失连续和有序分类数据的一般非线性结构方程模型的背景下开发了一种贝叶斯方法。在开发过程中,缺失数据被视为潜在量,并通过结合吉布斯采样器和梅特罗波利斯-黑斯廷斯算法的混合算法来处理数据的不完整性。我们通过模拟研究表明贝叶斯估计是准确的。提出了一种基于贝叶斯因子和路径采样的贝叶斯模型比较程序。在贝叶斯估计中,用于计算贝叶斯因子的后验分布所需观测值由混合算法模拟。我们的模拟结果表明,与忽略不完整记录相比,在分析中使用不完整记录时更频繁地选择正确模型。该方法通过一个来自针对菲律宾性工作者的艾滋病预防干预研究的真实数据集进一步说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验