Suppr超能文献

在存在缺失数据的贝叶斯分段增长模型中恢复节点位置

Recovering knot placements in Bayesian piecewise growth models with missing data.

作者信息

Heo Ihnwhi, Jia Fan, Depaoli Sarah

机构信息

Department of Psychological Sciences, University of California, Merced, 5200 N. Lake Road, Merced, CA, 95343, USA.

出版信息

Behav Res Methods. 2025 Jun 18;57(7):201. doi: 10.3758/s13428-025-02716-0.

Abstract

Bayesian piecewise growth models (PGMs) are useful tools to capture nonlinear trends comprised of distinct developmental phases. An important parameter in Bayesian PGMs is the knot location - the time at which transitions arise between phases. While researchers can specify knot locations when they are known a priori, a more flexible approach is to estimate knot locations based on data. The Bayesian estimation of knot locations is largely affected by prior distributions and missing data; however, little is known about the impact of these two factors in recovering knot placements. In the current article, we conducted a Monte Carlo simulation study to examine the impact of different prior specifications and the presence of missing data on the recovery of knot placements in Bayesian PGMs. Simulation results indicated that in small sample sizes, knot location estimates were dictated by prior distributions. Even with larger sample sizes, the estimates remained sensitive to informative and inaccurate prior specifications. The presence of missing data complicated the recovery linked to certain priors. While negative consequences, such as bias in parameter estimates, were caused by a larger amount of missing data, this could be alleviated by informative and accurate priors. These findings emphasize the critical role and intertwined influence of prior distributions and missing data in reaching conclusions about changepoints. We present an illustrative example using real data with missing values to demonstrate the Bayesian estimation of knot locations under realistic scenarios. Recommendations for applied researchers are discussed.

摘要

贝叶斯分段增长模型(PGMs)是捕捉由不同发育阶段组成的非线性趋势的有用工具。贝叶斯PGMs中的一个重要参数是节点位置——即各阶段之间发生转变的时间。虽然研究人员在节点位置已知的情况下可以指定它们,但一种更灵活的方法是根据数据估计节点位置。节点位置的贝叶斯估计在很大程度上受先验分布和缺失数据的影响;然而,对于这两个因素在恢复节点位置方面的影响却知之甚少。在本文中,我们进行了一项蒙特卡洛模拟研究,以检验不同先验规范和缺失数据的存在对贝叶斯PGMs中节点位置恢复的影响。模拟结果表明,在小样本量情况下,节点位置估计由先验分布决定。即使样本量较大,估计值对信息丰富但不准确的先验规范仍很敏感。缺失数据的存在使与某些先验相关的恢复变得复杂。虽然大量缺失数据会导致诸如参数估计偏差等负面后果,但这可以通过信息丰富且准确的先验来缓解。这些发现强调了先验分布和缺失数据在得出关于变化点的结论中的关键作用和相互交织的影响。我们给出一个使用带有缺失值的真实数据的示例,以展示在现实场景下节点位置的贝叶斯估计。并讨论了对应用研究人员的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bff3/12176931/d96fbea0d2d0/13428_2025_2716_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验