Price Rachel L, Ellison Karen, Haberstroh Karen M, Webster Thomas J
Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907-1296, USA.
J Biomed Mater Res A. 2004 Jul 1;70(1):129-38. doi: 10.1002/jbm.a.30073.
Carbon nanofibers have exceptional theoretical mechanical properties (such as low weight-to-strength ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in bone, suggest strong possibilities for use as an orthopedic/dental implant material. To determine, for the first time, cytocompatibility properties pertinent for bone prosthetic applications, osteoblast (bone-forming cells), fibroblast (cells contributing to callus formation and fibrous encapsulation events that result in implant loosening), chondrocyte (cartilage-forming cells), and smooth muscle cell (for comparison purposes) adhesion were determined on carbon nanofibers in the present in vitro study. Results provided evidence that, compared to conventional carbon fibers, nanometer dimension carbon fibers promoted select osteoblast adhesion. Moreover, adhesion of other cells was not influenced by carbon fiber dimensions. In fact, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. To determine properties that selectively enhanced osteoblast adhesion, similar cell adhesion assays were performed on polymer (specifically, poly-lactic-co-glycolic; PLGA) casts of carbon fiber compacts previously tested. Compared to PLGA casts of conventional carbon fibers, results provided the first evidence of enhanced select osteoblast adhesion on PLGA casts of nanophase carbon fibers. The summation of these results demonstrate that due to a high degree of nanometer surface roughness, carbon fibers with nanometer dimensions may be optimal materials to selectively increase osteoblast adhesion necessary for successful orthopedic/dental implant applications.
碳纳米纤维具有优异的理论机械性能(如低重量强度比),并且其纳米级纤维尺寸与骨骼中发现的结晶羟基磷灰石相似,这表明其作为骨科/牙科植入材料具有很大的应用潜力。在本体外研究中,为首次确定与骨假体应用相关的细胞相容性特性,对成骨细胞(骨形成细胞)、成纤维细胞(促成骨痂形成和纤维包裹事件从而导致植入物松动的细胞)、软骨细胞(软骨形成细胞)和平滑肌细胞(用于比较)在碳纳米纤维上的黏附情况进行了测定。结果表明,与传统碳纤维相比,纳米尺寸的碳纤维促进了特定成骨细胞的黏附。此外,其他细胞的黏附不受碳纤维尺寸的影响。事实上,平滑肌细胞、成纤维细胞和软骨细胞的黏附会随着碳纳米纤维表面能的增加或碳纳米纤维化学性质的同时变化而降低。为了确定选择性增强成骨细胞黏附的特性,对先前测试过的碳纤维压块的聚合物(具体为聚乳酸 - 乙醇酸共聚物;PLGA)铸型进行了类似的细胞黏附试验。与传统碳纤维的PLGA铸型相比,结果首次证明了在纳米相碳纤维的PLGA铸型上特定成骨细胞的黏附有所增强。这些结果的总和表明,由于高度的纳米级表面粗糙度,纳米尺寸的碳纤维可能是选择性增加骨科/牙科植入成功应用所需的成骨细胞黏附的最佳材料。