Thomas Maikael A, Rowberg Alan H, Langer Steve G, Kim Yongmin
Image Computing Systems Laboratory, Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA.
J Digit Imaging. 2004 Sep;17(3):189-95. doi: 10.1007/s10278-004-1000-z. Epub 2004 Jun 4.
There is continual pressure on the radiology department to increase its productivity. Two important links to productivity in the computed/digital radiography (CR/DR) workflow chain are the postprocessing step by technologists and the primary diagnosis step by radiologists, who may apply additional image enhancements to aid them in diagnosis. With the large matrix size of CR and DR images and the computational complexity of these algorithms, it has been challenging to provide interactive image enhancement, particularly on full-resolution images. We have used a new programmable processor as the main computing engine of enhancement algorithms for CR or DR images. We have mapped these algorithms to the processor, maximally utilizing its architecture. On a 12-bit 2688 x 2688 image, we have achieved the execution time of 465A ms for adaptive unsharp masking, window/level, image rotate, and lookup table operations using a single processor, which represents at least an order of magnitude improvement compared to the response time of current systems. This kind of performance facilitates rapid computation with preset parameter values and/or enables truly interactive QA processing on radiographs by technologists. The fast response time of these algorithms would be especially useful in a real-time radiology setting, where the radiologist's waiting time in performing image enhancements before making diagnosis can be greatly reduced. We believe that the use of these processors for fast CR/DR image computing coupled with the seamless flow of images and patient data will enable the radiology department to achieve higher productivity.
放射科面临着持续的压力,需要提高其工作效率。在计算机/数字射线摄影(CR/DR)工作流程链中,与工作效率密切相关的两个重要环节是技术人员的后处理步骤和放射科医生的初步诊断步骤,放射科医生可能会应用额外的图像增强技术来辅助诊断。由于CR和DR图像的矩阵尺寸较大,以及这些算法的计算复杂性,提供交互式图像增强一直具有挑战性,尤其是在全分辨率图像上。我们使用了一种新型可编程处理器作为CR或DR图像增强算法的主要计算引擎。我们已将这些算法映射到该处理器上,最大限度地利用其架构。在一幅12位、2688×2688的图像上,使用单个处理器进行自适应锐化掩膜、窗宽/窗位、图像旋转和查找表操作时,我们实现了465A毫秒的执行时间,与当前系统的响应时间相比,这至少提高了一个数量级。这种性能有助于使用预设参数值进行快速计算,和/或使技术人员能够对射线照片进行真正的交互式质量保证处理。这些算法的快速响应时间在实时放射学环境中尤其有用,在这种环境下,放射科医生在进行诊断前执行图像增强时的等待时间可以大大缩短。我们相信,将这些处理器用于快速CR/DR图像计算,再结合图像和患者数据的无缝流动,将使放射科能够实现更高的工作效率。