Andreev Igor A, Hyon Kim Sang, Kalinina Natalia O, Rakitina Darya V, Fitzgerald Alexander G, Palukaitis Peter, Taliansky Michael E
Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
J Mol Biol. 2004 Jun 18;339(5):1041-7. doi: 10.1016/j.jmb.2004.04.013.
RNA-protein interactions are fundamental for different aspects of molecular biology such as gene expression, assembly of biomolecular complexes or macromolecular transport. The 3a movement protein (MP) of a plant virus, Cucumber mosaic virus (CMV), forms ribonucleoprotein (RNP) complexes with viral RNA, capable of trafficking from cell-to-cell throughout the infected plant only in the presence of the CMV capsid protein (CP). However, deletion of the C-terminal 33 amino acid residues of the CMV MP (in the mutant designated 3aDeltaC33 MP) resulted in CP-independent cell-to-cell movement. The biological differences in the behaviour of CMV wild type (wt) 3a MP and 3aDeltaC33 MP could have been a consequence of differences in the RNA-binding properties of the two MPs detected previously using biochemical assays on ensembles of molecules. To investigate the physical mechanisms of MP-RNA interactions at a single molecule level, we applied atomic force microscopy to measure for the first time unbinding forces between these individual binding partners. Minimal unbinding forces determined for individual interaction of the CMV RNA molecule with the CMV wt or truncated MPs were estimated to be approximately 45 pN and approximately 90 pN, respectively, suggesting that the distinct differences in the strength of MP-RNA interactions for the wt MP and truncated MP are attributable to the molecular binding mechanism. We also demonstrated that molecules of both CMV 3a MP and 3aDeltaC33 MP were capable of self-interaction with minimal unbinding forces of approximately 50 pN and approximately 70 pN, respectively, providing a physical basis for the cooperative mechanism of the RNA binding. The significance of intermolecular force measurements for understanding the structural and functional aspects of viral RNP formation and trafficking is discussed.
RNA与蛋白质的相互作用对于分子生物学的不同方面至关重要,如基因表达、生物分子复合物的组装或大分子运输。植物病毒黄瓜花叶病毒(CMV)的3a运动蛋白(MP)与病毒RNA形成核糖核蛋白(RNP)复合物,只有在CMV衣壳蛋白(CP)存在的情况下,才能在整个受感染植物中进行细胞间运输。然而,CMV MP的C末端33个氨基酸残基的缺失(在命名为3aDeltaC33 MP的突变体中)导致了不依赖CP的细胞间运动。CMV野生型(wt)3a MP和3aDeltaC33 MP行为上的生物学差异可能是先前使用分子集合的生化分析检测到的两种MP的RNA结合特性差异的结果。为了在单分子水平上研究MP-RNA相互作用的物理机制,我们应用原子力显微镜首次测量了这些单个结合伙伴之间的解离力。CMV RNA分子与CMV wt或截短的MP的单个相互作用所确定的最小解离力分别估计约为45 pN和约90 pN,这表明wt MP和截短MP的MP-RNA相互作用强度的明显差异可归因于分子结合机制。我们还证明,CMV 3a MP和3aDeltaC33 MP的分子都能够自我相互作用,最小解离力分别约为50 pN和约70 pN,为RNA结合的协同机制提供了物理基础。讨论了分子间力测量对于理解病毒RNP形成和运输的结构和功能方面的意义。