Suppr超能文献

C6H5 + CH3CHO反应的动力学与机理:对四个分子位点反应活性的实验测量与理论预测

Kinetics and mechanism of the C6H5 + CH3CHO reaction: experimental measurement and theoretical prediction of the reactivity toward four molecular sites.

作者信息

Choi Y M, Park J, Lin M C

机构信息

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.

出版信息

Chemphyschem. 2004 May 17;5(5):661-8. doi: 10.1002/cphc.200301201.

Abstract

The kinetics and mechanism of the reaction of C6H5 with CH3CHO have been investigated experimentally and theoretically. The total rate constant for the reaction has been measured by means of the cavity ring-down spectrometry (CRDS) in the temperature range 299-501 K at pressures covering 20-75 Torr. The overall bimolecular rate constant can be represented by the expression k = (2.8 +/- 0.2) x 10(11) exp[-(700 +/- 30)/T] cm3 mol-1 s-1, which is slightly faster than for the analogous C6H5 + CH2O reaction determined with the same method in the same temperature range. The reaction mechanism for the C6H5 + CH3CHO reaction was also explored with quantum-chemical calculations at various hybrid density functional theories (DFTs) and using ab initio high-level composite methods. The theories predict that the reaction may occur by two hydrogen-abstraction and two addition channels with the aldehydic hydrogen-abstraction reaction being dominant. The rate constant calculated by the transition state theory for the aldehydic hydrogen-abstraction reaction is in good agreement with the experimental result after a very small adjustment of the predicted reaction barrier (+0.3 kcal mol-1). Contributions from other product channels are negligible under our experimental conditions. For combustion applications, we have calculated the rate constants for key product channels in the temperature range of 298-2500 K under atmospheric-pressure conditions; they can be represented by the following expressions in units of cm 3mol-1 s-1: k1,cho = 8.8 x 10(3)T2.6 exp(-90/T), k2,ch3 = 6.0 x 10(1)T3.3 exp(-950/T), k3a(C6H5COCH3 + H) = 4.2 x 10(5)T0.6 exp(-410/T) and k3b(C6H5CHO + CH3) = 6.6 x 10(9)T-0.5 exp(-310/T).

摘要

已通过实验和理论研究了C6H5与CH3CHO反应的动力学和反应机理。在299 - 501 K的温度范围内、20 - 75 Torr的压力下,借助腔衰荡光谱法(CRDS)测量了该反应的总速率常数。双分子总速率常数可用表达式k = (2.8 ± 0.2) × 10(11) exp[-(700 ± 30)/T] cm3 mol-1 s-1表示,这比在相同温度范围内用相同方法测定的类似C6H5 + CH2O反应稍快。还采用各种杂化密度泛函理论(DFT)并使用从头算高水平复合方法,通过量子化学计算探索了C6H5 + CH3CHO反应的机理。这些理论预测该反应可能通过两条氢提取通道和两条加成通道发生,其中醛氢提取反应占主导。在对预测的反应势垒进行非常小的调整(+0.3 kcal mol-1)后,通过过渡态理论计算的醛氢提取反应速率常数与实验结果吻合良好。在我们的实验条件下,其他产物通道的贡献可忽略不计。对于燃烧应用,我们计算了在大气压条件下298 - 2500 K温度范围内关键产物通道的速率常数;它们可用以下以cm 3mol-1 s-1为单位的表达式表示:k1,cho = 8.8 × 10(3)T2.6 exp(-90/T),k2,ch3 = 6.0 × 10(1)T3.3 exp(-950/T),k3a(C6H5COCH3 + H) = 4.2 × 10(5)T0.6 exp(-410/T) 和k3b(C6H5CHO + CH3) = 6.6 × 10(9)T-0.5 exp(-310/T)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验