Zhu R S, Nguyen Hue M T, Lin M C
Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
J Phys Chem A. 2009 Jan 8;113(1):298-304. doi: 10.1021/jp805821x.
The mechanism for the reaction of NCN with OH has been investigated by ab initio molecular orbital and transition-state theory calculations. The potential energy surface (PES) was calculated by the highest level of the modified GAUSSIAN-2 (G2M) method, G2M(CC1). The barrierless association process of OH + NCN --> OH...NCN (van der Waals, vdw) was also examined at the UCCSD(T)/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) and CASPT2(13,13)/ANO-L//B3LYP/6-311+G(d,p) levels. The predicted heats of reaction for the production of H + NCNO, HNC + NO, HCN + NO, and N(2) + HOC, 7.8, -53.2, -66.9, and -67.7, respectively, are in excellent agreement with the experimental values, 8.2 +/- 1.3, -52.3 +/- 1.7 (or 55.7 +/- 1.7), -66.3 +/- 0.7, and -68.1 +/- 0.7 kcal/mol. The kinetic results indicate that, in the temperature range of 300-1000 K, the formation of trans,trans-HONCN (LM2) is dominant. Over 1000 K, formation of H + NCNO is dominant, while the formation of HCN + NO becomes competitive. The rate constants for the low-energy channels given in units of cm(3) molecule(-1) s(-1) can be represented by the following: k(1)(LM2) = 1.51 x 10 (15)T(-8.72) exp(-2531/T) at 300-1500 K in 760 Torr N(2); k(2)(H+NCNO) = 5.54 x 10 (-14)T(-0.97) exp(-3669/T) and k(3)(HCN+NO) = 7.82 x 10 (-14)T(0.44) exp(-2013/T) at 300-2500 K, with the total rate constant of k(t) = 3.18 x 10 (2)T(-4.63) exp(-740/T), 300-1000 K, and k(t) = 2.53 x 10 (-14)T(1.13) exp(-489/T) in the temperature range of 1200-2500 K. These results are recommended for combustion modeling applications.
通过从头算分子轨道和过渡态理论计算研究了NCN与OH反应的机理。势能面(PES)采用改进的高斯-2(G2M)方法的最高水平G2M(CC1)进行计算。还在UCCSD(T)/6-311+G(3df,2p)//B3LYP/6-311+G(d,p)和CASPT2(13,13)/ANO-L//B3LYP/6-311+G(d,p)水平上研究了OH + NCN→OH...NCN(范德华,vdw)的无势垒缔合过程。预测生成H + NCNO、HNC + NO、HCN + NO和N₂ + HOC的反应热分别为7.8、-53.2、-66.9和-67.7,与实验值8.2±1.3、-52.3±1.7(或55.7±1.7)、-66.3±0.7和-68.1±0.7 kcal/mol非常吻合。动力学结果表明,在300 - 1000 K的温度范围内,反式,反式-HONCN(LM2)的形成占主导。超过1000 K时,H + NCNO的形成占主导,而HCN + NO的形成变得具有竞争力。以cm³分子⁻¹ s⁻¹为单位给出的低能通道的速率常数可表示如下:在760 Torr N₂中,300 - 1500 K时k(₁)(LM2) = 1.51×10¹⁵T⁻⁸·⁷² exp(-2531/T);300 - 2500 K时k(₂)(H + NCNO) = 5.54×10⁻¹⁴T⁻⁰·⁹⁷ exp(-3669/T),k(₃)(HCN + NO) = 7.82×10⁻¹⁴T⁰·⁴⁴ exp(-2013/T),300 - 1000 K时总速率常数k(t) = 3.18×10²T⁻⁴·⁶³ exp(-740/T),1200 - 2500 K温度范围内k(t) = 2.53×10⁻¹⁴T¹·¹³ exp(-489/T)。这些结果推荐用于燃烧模型应用。