Kauermann Göran, Eilers Paul
Department of Economics and Business Administration, University of Bielefeld, 33501 Bielefeld, Germany.
Biometrics. 2004 Jun;60(2):376-87. doi: 10.1111/j.0006-341X.2004.00182.x.
An important goal of microarray studies is the detection of genes that show significant changes in expression when two classes of biological samples are being compared. We present an ANOVA-style mixed model with parameters for array normalization, overall level of gene expression, and change of expression between the classes. For the latter we assume a mixing distribution with a probability mass concentrated at zero, representing genes with no changes, and a normal distribution representing the level of change for the other genes. We estimate the parameters by optimizing the marginal likelihood. To make this practical, Laplace approximations and a backfitting algorithm are used. The performance of the model is studied by simulation and by application to publicly available data sets.
微阵列研究的一个重要目标是检测在比较两类生物样本时表达有显著变化的基因。我们提出了一种方差分析(ANOVA)风格的混合模型,该模型具有用于阵列归一化、基因表达总体水平以及两类样本间表达变化的参数。对于后者,我们假设一种混合分布,其概率质量集中在零处,代表无变化的基因,以及一种正态分布,代表其他基因的变化水平。我们通过优化边际似然来估计参数。为了使其具有实用性,使用了拉普拉斯近似和反向拟合算法。通过模拟以及应用于公开可用数据集来研究该模型的性能。