Suppr超能文献

皮质类固醇给药后多组织基因表达数据的贝叶斯模型与荟萃分析

Bayesian models and meta analysis for multiple tissue gene expression data following corticosteroid administration.

作者信息

Liang Yulan, Kelemen Arpad

机构信息

Department of Organizational Systems and Adult Health, University of Maryland, 655 W, Lombard Street, Baltimore, MD 21201-1579, USA.

出版信息

BMC Bioinformatics. 2008 Aug 28;9:354. doi: 10.1186/1471-2105-9-354.

Abstract

BACKGROUND

This paper addresses key biological problems and statistical issues in the analysis of large gene expression data sets that describe systemic temporal response cascades to therapeutic doses in multiple tissues such as liver, skeletal muscle, and kidney from the same animals. Affymetrix time course gene expression data U34A are obtained from three different tissues including kidney, liver and muscle. Our goal is not only to find the concordance of gene in different tissues, identify the common differentially expressed genes over time and also examine the reproducibility of the findings by integrating the results through meta analysis from multiple tissues in order to gain a significant increase in the power of detecting differentially expressed genes over time and to find the differential differences of three tissues responding to the drug.

RESULTS AND CONCLUSION

Bayesian categorical model for estimating the proportion of the 'call' are used for pre-screening genes. Hierarchical Bayesian Mixture Model is further developed for the identifications of differentially expressed genes across time and dynamic clusters. Deviance information criterion is applied to determine the number of components for model comparisons and selections. Bayesian mixture model produces the gene-specific posterior probability of differential/non-differential expression and the 95% credible interval, which is the basis for our further Bayesian meta-inference. Meta-analysis is performed in order to identify commonly expressed genes from multiple tissues that may serve as ideal targets for novel treatment strategies and to integrate the results across separate studies. We have found the common expressed genes in the three tissues. However, the up/down/no regulations of these common genes are different at different time points. Moreover, the most differentially expressed genes were found in the liver, then in kidney, and then in muscle.

摘要

背景

本文探讨了在分析大型基因表达数据集时的关键生物学问题和统计问题,这些数据集描述了同一动物的肝脏、骨骼肌和肾脏等多个组织对治疗剂量的全身时间响应级联。Affymetrix时间进程基因表达数据U34A来自肾脏、肝脏和肌肉这三种不同组织。我们的目标不仅是找到不同组织中基因的一致性,确定随时间变化的共同差异表达基因,还通过对多个组织的结果进行元分析来整合结果,以显著提高检测随时间变化的差异表达基因的能力,并找出三种组织对药物反应的差异差异。

结果与结论

用于估计“调用”比例的贝叶斯分类模型用于基因预筛选。进一步开发了分层贝叶斯混合模型,用于识别跨时间和动态聚类的差异表达基因。应用偏差信息准则来确定模型比较和选择的组件数量。贝叶斯混合模型产生基因特异性的差异/非差异表达后验概率和95%可信区间,这是我们进一步进行贝叶斯元推断的基础。进行元分析是为了识别多个组织中可能作为新型治疗策略理想靶点的共同表达基因,并整合不同研究的结果。我们在三种组织中发现了共同表达的基因。然而,这些共同基因在不同时间点的上调/下调/无调控情况不同。此外,差异表达最显著的基因在肝脏中最多,其次是肾脏,然后是肌肉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52d2/2579308/8bd878646725/1471-2105-9-354-1.jpg

相似文献

2
Bayesian finite Markov mixture model for temporal multi-tissue polygenic patterns.
Biom J. 2009 Feb;51(1):56-69. doi: 10.1002/bimj.200710489.
4
Bayesian meta-analysis models for microarray data: a comparative study.
BMC Bioinformatics. 2007 Mar 7;8:80. doi: 10.1186/1471-2105-8-80.
6
Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S9. doi: 10.1186/1471-2105-9-S1-S9.
10
A Bayesian mixture model for metaanalysis of microarray studies.
Funct Integr Genomics. 2008 Feb;8(1):43-53. doi: 10.1007/s10142-007-0058-3. Epub 2007 Sep 19.

引用本文的文献

1
Computational dynamic approaches for temporal omics data with applications to systems medicine.
BioData Min. 2017 Jun 17;10:20. doi: 10.1186/s13040-017-0140-x. eCollection 2017.
2
Defining nephrotic syndrome from an integrative genomics perspective.
Pediatr Nephrol. 2015 Jan;30(1):51-63; quiz 59. doi: 10.1007/s00467-014-2857-9. Epub 2014 Jun 3.
4
Meta-analysis of inter-species liver co-expression networks elucidates traits associated with common human diseases.
PLoS Comput Biol. 2009 Dec;5(12):e1000616. doi: 10.1371/journal.pcbi.1000616. Epub 2009 Dec 18.
5
Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data.
BMC Med Genomics. 2009 Aug 4;2:48. doi: 10.1186/1755-8794-2-48.

本文引用的文献

2
Temporal gene expression classification with regularised neural network.
Int J Bioinform Res Appl. 2005;1(4):399-413. doi: 10.1504/IJBRA.2005.008443.
4
Bayesian meta-analysis models for microarray data: a comparative study.
BMC Bioinformatics. 2007 Mar 7;8:80. doi: 10.1186/1471-2105-8-80.
5
Hierarchical Bayesian neural network for gene expression temporal patterns.
Stat Appl Genet Mol Biol. 2004;3:Article20. doi: 10.2202/1544-6115.1038. Epub 2004 Sep 3.
6
A data-driven clustering method for time course gene expression data.
Nucleic Acids Res. 2006 Mar 1;34(4):1261-9. doi: 10.1093/nar/gkl013. Print 2006.
7
Associating phenotypes with molecular events: recent statistical advances and challenges underpinning microarray experiments.
Funct Integr Genomics. 2006 Jan;6(1):1-13. doi: 10.1007/s10142-005-0006-z. Epub 2005 Nov 15.
8
Differential and trajectory methods for time course gene expression data.
Bioinformatics. 2005 Jul 1;21(13):3009-16. doi: 10.1093/bioinformatics/bti465. Epub 2005 May 10.
9
A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data.
Bioinformatics. 2005 Jul 1;21(13):3025-33. doi: 10.1093/bioinformatics/bti466. Epub 2005 Apr 28.
10
Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression.
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9309-14. doi: 10.1073/pnas.0401994101. Epub 2004 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验