Suppr超能文献

迈向整合的ADME预测:UDP-葡萄糖醛酸转移酶介导代谢建模的过去、现在和未来方向

Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases.

作者信息

Smith P A, Sorich M J, Low L S C, McKinnon R A, Miners J O

机构信息

Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, South Australia, Australia.

出版信息

J Mol Graph Model. 2004 Jul;22(6):507-17. doi: 10.1016/j.jmgm.2004.03.011.

Abstract

Undesirable absorption, distribution, metabolism, excretion (ADME) properties are the cause of many drug development failures and this has led to the need to identify such problems earlier in the development process. This review highlights computational (in silico) approaches that have been used to identify the characteristics of ligands influencing molecular recognition and/or metabolism by the drug-metabolising enzyme UDP-gucuronosyltransferase (UGT). Current studies applying pharmacophore elucidation, 2D-quantitative structure metabolism relationships (2D-QSMR), 3D-quantitative structure metabolism relationships (3D-QSMR), and non-linear pattern recognition techniques such as artificial neural networks and support vector machines for modelling metabolism by UGT are reported. An assessment of the utility of in silico approaches for the qualitative and quantitative prediction of drug glucuronidation parameters highlights the benefit of using multiple pharmacophores and also non-linear techniques for classification. Some of the challenges facing the development of generalisable models for predicting metabolism by UGT, including the need for screening of more diverse structures, are also outlined.

摘要

不良的吸收、分布、代谢、排泄(ADME)特性是许多药物研发失败的原因,这导致需要在研发过程中更早地识别此类问题。本综述重点介绍了用于识别影响药物代谢酶尿苷二磷酸葡萄糖醛酸转移酶(UGT)分子识别和/或代谢的配体特征的计算(计算机模拟)方法。报告了目前应用药效团阐释、二维定量结构代谢关系(2D-QSMR)、三维定量结构代谢关系(3D-QSMR)以及非线性模式识别技术(如人工神经网络和支持向量机)对UGT介导的代谢进行建模的研究。对计算机模拟方法在药物葡萄糖醛酸化参数定性和定量预测中的效用评估突出了使用多个药效团以及非线性技术进行分类的益处。还概述了开发用于预测UGT介导代谢的通用模型所面临的一些挑战,包括需要筛选更多样化的结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验