Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA.
J Pharmacol Exp Ther. 2011 Feb;336(2):403-13. doi: 10.1124/jpet.110.175356. Epub 2010 Nov 10.
Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.
葡萄糖醛酸化通常被认为是限制黄酮醇生物利用度的决定因素之一。因此,设计和合成更具生物利用度的黄酮醇将受益于使用动力学参数(例如,黄酮醇衍生的 K(m)、V(max)、内在清除率 (CL(int))=V(max)/K(m))建立预测葡萄糖醛酸化的模型。本文旨在构建位置 (3-OH)-特异性比较分子场分析 (CoMFA) 模型,以描述 UDP-葡萄糖醛酸基转移酶 (UGT) 1A9 介导的黄酮醇的葡萄糖醛酸化,可用于设计较差的 UGT1A9 底物。对 30 种黄酮醇的重组 UGT1A9 介导的 3-O-葡萄糖醛酸化动力学进行了表征,并获得了动力学参数(K(m)、V(max)、CL(int))。观察到的 3-O-葡萄糖醛酸化的 K(m)、V(max) 和 CL(int) 值范围分别为 0.04 至 0.68 μM、0.04 至 12.95 nmol/mg/min 和 0.06 至 109.60 ml/mg/min。为了对 UGT1A9 介导的葡萄糖醛酸化进行建模,将 30 种黄酮醇分为训练集(23 种化合物)和测试集(7 种化合物)。然后通过将黄酮醇映射到特定的通用特征药效团上来对齐这些黄酮醇,分别用于构建 V(max)和 CL(int)的 CoMFA 模型。推导的 CoMFA 模型具有良好的内部和外部一致性,并显示出统计学意义和实质性的预测能力(V(max)模型:q(2)=0.738、r(2)=0.976、r(pred)(2)=0.735;CL(int)模型:q(2)=0.561、r(2)=0.938、r(pred)(2)=0.630)。从 CoMFA 建模中得出的等高线图清楚地表明了与快速或缓慢 3-O-葡萄糖醛酸化相关的结构特征。总之,将 CoMFA 分析与基于药效团的结构对齐相结合的方法可用于构建 UGT1A9 对黄酮醇的区域特异性葡萄糖醛酸化速率的预测模型。