Merker Marilyn P, Bongard Robert D, Krenz Gary S, Zhao Hongtao, Fernandes Viola S, Kalyanaraman Balaraman, Hogg Neil, Audi Said H
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.
Free Radic Biol Med. 2004 Jul 1;37(1):86-103. doi: 10.1016/j.freeradbiomed.2004.02.078.
The study objective was to use pulmonary arterial endothelial cells to examine kinetics and mechanisms contributing to the disposition of the quinone 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) observed during passage through the pulmonary circulation. The approach was to add DQ, durohydroquinone (DQH2), or DQ with the cell membrane-impermeant oxidizing agent, ferricyanide (Fe(CN)6(3)-), to the cell medium, and to measure the medium concentrations of substrates and products over time. Studies were carried out under control conditions and with dicumarol, to inhibit NAD(P)H:quinone oxidoreductase 1 (NQO1), or cyanide, to inhibit mitochondrial electron transport. In control cells, DQH2 appears in the extracellular medium of cells incubated with DQ, and DQ appears when the cells are incubated with DQH2. Dicumarol blocked the appearance of DQH2 when DQ was added to the cell medium, and cyanide blocked the appearance of DQ when DQH2 was added to the cell medium, suggesting that the two electron reductase NQO1 dominates DQ reduction and mitochondrial electron transport complex III is the predominant route of DQH2 oxidation. In the presence of cyanide, the addition of DQ also resulted in an increased rate of appearance of DQH2 and stimulation of cyanide-insensitive oxygen consumption. As DQH2 does not autoxidize-comproportionate over the study time course, these observations suggest a cyanide-stimulated one-electron DQ reduction and durosemiquinone (DQ*-) autoxidation. The latter processes are apparently confined to the cell interior, as the cell membrane impermeant oxidant, ferricyanide, did not inhibit the DQ-stimulated cyanide-insensitive oxygen consumption. Thus, regardless of whether DQ is reduced via a one- or two-electron reduction pathway, the net effect in the extracellular medium is the appearance of DQH2. These endothelial redox functions and their apposition to the vessel lumen are consistent with the pulmonary endothelium being an important site of DQ reduction to DQH2 observed in the lungs.
本研究的目的是利用肺动脉内皮细胞来研究在通过肺循环过程中对醌类物质2,3,5,6 - 四甲基 - 1,4 - 苯醌(杜醌,DQ)处置的动力学及机制。方法是将DQ、杜氢醌(DQH2)或与细胞膜不通透的氧化剂铁氰化物(Fe(CN)6(3)-)一起添加到细胞培养基中,并随时间测量培养基中底物和产物的浓度。研究在对照条件下进行,同时使用双香豆素抑制NAD(P)H:醌氧化还原酶1(NQO1),或使用氰化物抑制线粒体电子传递。在对照细胞中,与DQ一起孵育的细胞外培养基中会出现DQH2,而与DQH2一起孵育的细胞中会出现DQ。当将DQ添加到细胞培养基中时,双香豆素可阻止DQH2的出现;当将DQH2添加到细胞培养基中时,氰化物可阻止DQ的出现,这表明双电子还原酶NQO1主导DQ的还原,而线粒体电子传递复合物III是DQH2氧化的主要途径。在存在氰化物的情况下,添加DQ还导致DQH2出现的速率增加,并刺激对氰化物不敏感的耗氧量。由于在研究的时间进程中DQH2不会自动氧化 - 歧化,这些观察结果表明存在氰化物刺激的单电子DQ还原和杜罗半醌(DQ* - )自动氧化。后一过程显然局限于细胞内部,因为细胞膜不通透的氧化剂铁氰化物不会抑制DQ刺激的对氰化物不敏感的耗氧量。因此,无论DQ是通过单电子还是双电子还原途径被还原,细胞外培养基中的净效应都是DQH2的出现。这些内皮细胞的氧化还原功能及其与血管腔的毗邻关系与肺内皮是肺中观察到的DQ还原为DQH2的重要部位一致。