Suppr超能文献

辅酶Q1在大鼠肺循环过程中的氧化还原代谢及高氧的影响。

Coenzyme Q1 redox metabolism during passage through the rat pulmonary circulation and the effect of hyperoxia.

作者信息

Audi Said H, Merker Marilyn P, Krenz Gary S, Ahuja Taniya, Roerig David L, Bongard Robert D

机构信息

Research Service 151, Zablocki VAMC, 5000 W. National Avenue, Milwaukee, WI 53295, USA.

出版信息

J Appl Physiol (1985). 2008 Oct;105(4):1114-26. doi: 10.1152/japplphysiol.00177.2008. Epub 2008 Aug 14.

Abstract

The objective was to evaluate the pulmonary disposition of the ubiquinone homolog coenzyme Q(1) (CoQ(1)) on passage through lungs of normoxic (exposed to room air) and hyperoxic (exposed to 85% O(2) for 48 h) rats. CoQ(1) or its hydroquinone (CoQ(1)H(2)) was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of CoQ(1)H(2) and CoQ(1) were measured. CoQ(1)H(2) appeared in the venous effluent when CoQ(1) was infused, and CoQ(1) appeared when CoQ(1)H(2) was infused. In normoxic lungs, CoQ(1)H(2) efflux rates when CoQ(1) was infused decreased by 58 and 33% in the presence of rotenone (mitochondrial complex I inhibitor) and dicumarol [NAD(P)H-quinone oxidoreductase 1 (NQO1) inhibitor], respectively. Inhibitor studies also revealed that lung CoQ(1)H(2) oxidation was via mitochondrial complex III. In hyperoxic lungs, CoQ(1)H(2) efflux rates when CoQ(1) was infused decreased by 23% compared with normoxic lungs. Based on inhibitor effects and a kinetic model, the effect of hyperoxia could be attributed predominantly to 47% decrease in the capacity of complex I-mediated CoQ(1) reduction, with no change in the other redox processes. Complex I activity in lung homogenates was also lower for hyperoxic than for normoxic lungs. These studies reveal that lung complexes I and III and NQO1 play a dominant role in determining the vascular concentration and redox status of CoQ(1) during passage through the pulmonary circulation, and that exposure to hyperoxia decreases the overall capacity of the lung to reduce CoQ(1) to CoQ(1)H(2) due to a depression in complex I activity.

摘要

目的是评估泛醌同系物辅酶Q(1)(CoQ(1))在通过常氧(暴露于室内空气)和高氧(暴露于85% O₂ 48小时)大鼠肺部时的肺内处置情况。将CoQ(1)或其对苯二酚(CoQ(1)H₂)注入离体灌注肺的动脉流入端,并测量CoQ(1)H₂和CoQ(1)的静脉流出率。注入CoQ(1)时,CoQ(1)H₂出现在静脉流出液中;注入CoQ(1)H₂时,CoQ(1)出现。在常氧肺中,注入CoQ(1)时,CoQ(1)H₂的流出率在存在鱼藤酮(线粒体复合物I抑制剂)和双香豆素[NAD(P)H-醌氧化还原酶1(NQO1)抑制剂]时分别降低了58%和33%。抑制剂研究还表明,肺CoQ(1)H₂氧化是通过线粒体复合物III进行的。在高氧肺中,注入CoQ(1)时,CoQ(1)H₂的流出率与常氧肺相比降低了23%。基于抑制剂作用和动力学模型,高氧的影响主要可归因于复合物I介导的CoQ(1)还原能力降低47%,而其他氧化还原过程无变化。高氧肺匀浆中的复合物I活性也低于常氧肺。这些研究表明,肺复合物I和III以及NQO1在决定CoQ(1)在肺循环中通过时的血管浓度和氧化还原状态方面起主导作用,并且暴露于高氧会由于复合物I活性降低而降低肺将CoQ(1)还原为CoQ(1)H₂的总体能力。

相似文献

1
Coenzyme Q1 redox metabolism during passage through the rat pulmonary circulation and the effect of hyperoxia.
J Appl Physiol (1985). 2008 Oct;105(4):1114-26. doi: 10.1152/japplphysiol.00177.2008. Epub 2008 Aug 14.
2
Coenzyme Q(1) as a probe for mitochondrial complex I activity in the intact perfused hyperoxia-exposed wild-type and Nqo1-null mouse lung.
Am J Physiol Lung Cell Mol Physiol. 2012 May 1;302(9):L949-58. doi: 10.1152/ajplung.00251.2011. Epub 2012 Jan 20.
3
Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia.
Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L809-19. doi: 10.1152/ajplung.00448.2006. Epub 2007 Jun 29.
4
Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen.
J Appl Physiol (1985). 2011 Jul;111(1):95-107. doi: 10.1152/japplphysiol.01451.2010. Epub 2011 May 5.
5
Genetic evidence for NAD(P)H:quinone oxidoreductase 1-catalyzed quinone reduction on passage through the mouse pulmonary circulation.
Am J Physiol Lung Cell Mol Physiol. 2011 May;300(5):L773-80. doi: 10.1152/ajplung.00394.2010. Epub 2011 Feb 4.
6
Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs.
Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L788-97. doi: 10.1152/ajplung.00064.2005. Epub 2005 Jun 30.
7
Influence of pulmonary arterial endothelial cells on quinone redox status: effect of hyperoxia-induced NAD(P)H:quinone oxidoreductase 1.
Am J Physiol Lung Cell Mol Physiol. 2006 Mar;290(3):L607-19. doi: 10.1152/ajplung.00302.2005. Epub 2005 Oct 21.
9
Duroquinone reduction during passage through the pulmonary circulation.
Am J Physiol Lung Cell Mol Physiol. 2003 Nov;285(5):L1116-31. doi: 10.1152/ajplung.00185.2003. Epub 2003 Jul 25.
10
Distribution of capillary transit times in isolated lungs of oxygen-tolerant rats.
Ann Biomed Eng. 2010 Nov;38(11):3449-65. doi: 10.1007/s10439-010-0092-5. Epub 2010 Jun 15.

引用本文的文献

2
In vivo molecular imaging stratifies rats with different susceptibilities to hyperoxic acute lung injury.
Am J Physiol Lung Cell Mol Physiol. 2022 Oct 1;323(4):L410-L422. doi: 10.1152/ajplung.00126.2022. Epub 2022 Aug 9.
3
Depolarized mitochondrial membrane potential and protection with duroquinone in isolated perfused lungs from rats exposed to hyperoxia.
J Appl Physiol (1985). 2022 Feb 1;132(2):346-356. doi: 10.1152/japplphysiol.00565.2021. Epub 2021 Dec 23.
4
Quantification of mitochondrial membrane potential in the isolated rat lung using rhodamine 6G.
J Appl Physiol (1985). 2020 Apr 1;128(4):892-906. doi: 10.1152/japplphysiol.00789.2019. Epub 2020 Mar 5.
8
Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs.
Ann Biomed Eng. 2013 Apr;41(4):827-36. doi: 10.1007/s10439-012-0716-z. Epub 2012 Dec 13.
9
Differential lung uptake of 99mTc-hexamethylpropyleneamine oxime and 99mTc-duramycin in the chronic hyperoxia rat model.
J Nucl Med. 2012 Dec;53(12):1984-91. doi: 10.2967/jnumed.112.108498. Epub 2012 Oct 19.
10
Role of glutathione in lung retention of 99mTc-hexamethylpropyleneamine oxime in two unique rat models of hyperoxic lung injury.
J Appl Physiol (1985). 2012 Aug 15;113(4):658-65. doi: 10.1152/japplphysiol.00441.2012. Epub 2012 May 24.

本文引用的文献

1
Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia.
Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L809-19. doi: 10.1152/ajplung.00448.2006. Epub 2007 Jun 29.
2
Kinetic modeling of contrast-enhanced MRI: an automated technique for assessing inflammation in the rheumatoid arthritis wrist.
Ann Biomed Eng. 2007 May;35(5):781-95. doi: 10.1007/s10439-006-9249-7. Epub 2007 Mar 6.
3
Coenzyme Q(1) depletes NAD(P)H and impairs recycling of ascorbate in astrocytes.
Brain Res. 2006 Mar 17;1078(1):9-18. doi: 10.1016/j.brainres.2006.01.068. Epub 2006 Feb 24.
4
Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ.
Am J Respir Cell Mol Biol. 2006 Apr;34(4):453-63. doi: 10.1165/rcmb.2005-0223OC. Epub 2005 Dec 15.
5
Influence of pulmonary arterial endothelial cells on quinone redox status: effect of hyperoxia-induced NAD(P)H:quinone oxidoreductase 1.
Am J Physiol Lung Cell Mol Physiol. 2006 Mar;290(3):L607-19. doi: 10.1152/ajplung.00302.2005. Epub 2005 Oct 21.
6
Computational modeling of physiological systems.
Physiol Genomics. 2005 Sep 21;23(1):1-3; discussion 4. doi: 10.1152/physiolgenomics.00117.2005.
7
Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation.
J Biol Chem. 2005 Nov 11;280(45):37339-48. doi: 10.1074/jbc.M503936200. Epub 2005 Sep 8.
8
Effect of chronic hyperoxic exposure on duroquinone reduction in adult rat lungs.
Am J Physiol Lung Cell Mol Physiol. 2005 Nov;289(5):L788-97. doi: 10.1152/ajplung.00064.2005. Epub 2005 Jun 30.
9
To live or die: a critical decision for the lung.
J Clin Invest. 2005 Apr;115(4):828-30. doi: 10.1172/JCI24681.
10
Oxygen tolerance and coupling of mitochondrial electron transport.
J Biol Chem. 2004 Nov 5;279(45):46580-7. doi: 10.1074/jbc.M406685200. Epub 2004 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验