Hauser Elizabeth R, Watanabe Richard M, Duren William L, Bass Meredyth P, Langefeld Carl D, Boehnke Michael
Section of Medical Genetics, Department of Medicine, Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
Genet Epidemiol. 2004 Jul;27(1):53-63. doi: 10.1002/gepi.20000.
Etiologic heterogeneity is a fundamental feature of complex disease etiology; genetic linkage analysis methods to map genes for complex traits that acknowledge the presence of genetic heterogeneity are likely to have greater power to identify subtle changes in complex biologic systems. We investigate the use of trait-related covariates to examine evidence for linkage in the presence of heterogeneity. Ordered-subset analysis (OSA) identifies subsets of families defined by the level of a trait-related covariate that provide maximal evidence for linkage, without requiring a priori specification of the subset. We propose that examining evidence for linkage in the subset directly may result in a more etiologically homogeneous sample. In turn, the reduced impact of heterogeneity will result in increased overall evidence for linkage to a specific region and a more distinct lod score peak. In addition, identification of a subset defined by a specific trait-related covariate showing increased evidence for linkage may help refine the list of candidate genes in a given region and suggest a useful sample in which to begin searching for trait-associated polymorphisms. This method provides a means to begin to bridge the gap between initial identification of linkage and identification of the disease predisposing variant(s) within a region when mapping genes for complex diseases. We illustrate this method by analyzing data on breast cancer age of onset and chromosome 17q [Hall et al., 1990, Science 250:1684-1689]. We evaluate OSA using simulation studies under a variety of genetic models.
病因异质性是复杂疾病病因的一个基本特征;用于定位复杂性状基因的遗传连锁分析方法若能认识到遗传异质性的存在,就可能更有能力识别复杂生物系统中的细微变化。我们研究了使用与性状相关的协变量来检验存在异质性时的连锁证据。有序子集分析(OSA)可识别由与性状相关的协变量水平所定义的家系子集,这些子集能提供最大的连锁证据,且无需事先指定子集。我们提出,直接检验子集中的连锁证据可能会得到一个病因上更同质的样本。相应地,异质性影响的降低将导致与特定区域连锁的总体证据增加以及对数优势分数峰值更明显。此外,识别出由特定的与性状相关的协变量所定义且显示出连锁证据增加的子集,可能有助于完善给定区域内的候选基因列表,并提示一个用于开始寻找性状相关多态性的有用样本。当为复杂疾病定位基因时,该方法提供了一种手段,可在一定程度上弥合连锁的初步识别与区域内疾病易感变异识别之间的差距。我们通过分析乳腺癌发病年龄和17号染色体q臂的数据[Hall等人,1990年,《科学》250:1684 - 1689]来说明此方法。我们在各种遗传模型下通过模拟研究来评估有序子集分析。