Suppr超能文献

通过多点分析确定性状位点位置:三种不同统计方法的准确性和效能

Determining trait locus position from multipoint analysis: accuracy and power of three different statistics.

作者信息

Greenberg D A, Abreu P C

机构信息

Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.

出版信息

Genet Epidemiol. 2001 Dec;21(4):299-314. doi: 10.1002/gepi.1036.

Abstract

Previous work using two-point linkage analysis showed that performing a lod score (LOD) analysis twice, once assuming dominant and once assuming recessive inheritance, and then taking the larger of the two values (designated MMLS) usually has more power to detect linkage than any other method tested. Using computer simulation for a variety of complex inheritance models, we demonstrated power for the MMLS comparable with analysis assuming the true model. However, reports in the literature suggested that the MMLS approach might fail to detect linkage using multipoint analysis due to genetic model misspecification. Here, we tested the robustness of the MMLS approach under multipoint analysis. We simulated data under complex inheritance models, including heterogeneity, epistatic, and additive models. We examined the expected maximum LOD, LOD assuming heterogeneity (HLOD), and nonparametric linkage statistics and the corresponding estimated position in a chromosomal interval of 10 markers with 10% recombination between markers. The mean estimates of position were generally good for all three statistics except when heterogeneity existed, where the LOD and the NPL did not perform as well as the HLOD. The MMLS approach was as robust using multipoint as using two-point linkage analysis. LOD and/or the HLOD generally had more power to detect linkage than NPL across a variety of generating models, even after correcting for the multiple tests. For finding linkage to one locus of several contributing to disease expression, assuming the dominant and recessive models with reduced penetrance is a good approximation of the mode of inheritance at that locus.

摘要

以往使用两点连锁分析的研究表明,进行两次对数优势计分(LOD)分析,一次假设显性遗传,一次假设隐性遗传,然后取两者中的较大值(称为MMLS),通常比其他任何测试方法更有能力检测连锁。通过对各种复杂遗传模型进行计算机模拟,我们证明了MMLS的效能与假设真实模型进行分析时相当。然而,文献报道表明,由于遗传模型设定错误,MMLS方法可能无法通过多点分析检测到连锁。在此,我们测试了MMLS方法在多点分析下的稳健性。我们在复杂遗传模型下模拟数据,包括异质性、上位性和加性模型。我们检查了预期的最大LOD、假设异质性的LOD(HLOD)、非参数连锁统计量以及在10个标记的染色体区间内相应的估计位置,标记间重组率为10%。除存在异质性时LOD和NPL表现不如HLOD外,位置的平均估计值对所有三种统计量总体上都较好。MMLS方法在多点分析中与两点连锁分析一样稳健。在各种生成模型中,即使经过多重检验校正,LOD和/或HLOD通常比NPL更有能力检测连锁。对于发现与导致疾病表达的几个位点之一的连锁,假设具有降低外显率的显性和隐性模型是该位点遗传模式的良好近似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验