Suppr超能文献

Identification of pre-sliding friction dynamics.

作者信息

Parlitz U, Hornstein A, Engster D, Al-Bender F, Lampaert V, Tjahjowidodo T, Fassois S D, Rizos D, Wong C X, Worden K, Manson G

机构信息

Drittes Physikalisches Institut, Universitat Gottingen, Burgerstrasse 42-44, D-37073 Gottingen, Germany.

出版信息

Chaos. 2004 Jun;14(2):420-30. doi: 10.1063/1.1737818.

Abstract

The hysteretic nonlinear dependence of pre-sliding friction force on displacement is modeled using different physics-based and black-box approaches including various Maxwell-slip models, NARX models, neural networks, nonparametric (local) models and dynamical networks. The efficiency and accuracy of these identification methods is compared for an experimental time series where the observed friction force is predicted from the measured displacement. All models, although varying in their degree of accuracy, show good prediction capability of pre-sliding friction. Finally, we show that even better results can be achieved by using an ensemble of the best models for prediction.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验