Bobrowicz Piotr, Davidson Robert C, Li Huijuan, Potgieter Thomas I, Nett Juergen H, Hamilton Stephen R, Stadheim Terrance A, Miele Robert G, Bobrowicz Beata, Mitchell Teresa, Rausch Sebastian, Renfer Eduard, Wildt Stefan
GlycoFi, Inc., 21 Lafayette Street, Suite 200, Lebanon, NH 03766, USA.
Glycobiology. 2004 Sep;14(9):757-66. doi: 10.1093/glycob/cwh104. Epub 2004 Jun 9.
A significant percentage of eukaryotic proteins contain posttranslational modifications, including glycosylation, which are required for biological function. However, the understanding of the structure-function relationships of N-glycans has lagged significantly due to the microheterogeneity of glycosylation in mammalian produced proteins. Recently we reported on the cellular engineering of yeast to replicate human N-glycosylation for the production of glycoproteins. Here we report the engineering of an artificial glycosylation pathway in Pichia pastoris blocked in dolichol oligosaccharide assembly. The PpALG3 gene encoding Dol-P-Man:Man(5)GlcNAc(2)-PP-Dol mannosyltransferase was deleted in a strain that was previously engineered to produce hybrid GlcNAcMan(5)GlcNAc(2) human N-glycans. Employing this approach, combined with the use of combinatorial genetic libraries, we engineered P. pastoris strains that synthesize complex GlcNAc(2)Man(3)GlcNAc(2) N-glycans with striking homogeneity. Furthermore, through expression of a Golgi-localized fusion protein comprising UDP-glucose 4-epimerase and beta-1,4-galactosyl transferase activities we demonstrate that this structure is a substrate for highly efficient in vivo galactose addition. Taken together, these data demonstrate that the artificial in vivo glycoengineering of yeast represents a major advance in the production of glycoproteins and will emerge as a practical tool to systematically elucidate the structure-function relationship of N-glycans.
相当大比例的真核生物蛋白质含有翻译后修饰,包括糖基化,而这些修饰对于生物学功能是必需的。然而,由于哺乳动物产生的蛋白质中糖基化的微观异质性,对N -聚糖的结构 - 功能关系的理解显著滞后。最近我们报道了对酵母进行细胞工程改造以复制人类N -糖基化用于糖蛋白生产的研究。在此我们报道了在多萜醇寡糖组装受阻的毕赤酵母中构建人工糖基化途径。在先前已改造为产生杂合型GlcNAcMan(5)GlcNAc(2)人类N -聚糖的菌株中,删除了编码Dol - P - Man:Man(5)GlcNAc(2)-PP - Dol甘露糖基转移酶的PpALG3基因。采用这种方法,并结合使用组合遗传文库,我们构建了能够合成具有显著同质性的复杂GlcNAc(2)Man(3)GlcNAc(2) N -聚糖的毕赤酵母菌株。此外,通过表达包含UDP -葡萄糖4 -差向异构酶和β - 1,4 -半乳糖基转移酶活性的高尔基体定位融合蛋白,我们证明了这种结构是体内高效添加半乳糖的底物。综上所述,这些数据表明酵母的人工体内糖基工程在糖蛋白生产方面代表了一项重大进展,并将成为系统阐明N -聚糖结构 - 功能关系的实用工具。