Suppr超能文献

基于结构的H-N-H核酸内切酶金属依赖性机制分析。

Structure-based analysis of the metal-dependent mechanism of H-N-H endonucleases.

作者信息

Maté María J, Kleanthous Colin

机构信息

Department of Biology, Area 10, P. O. Box 373, University of York, Heslington YO10 5YW, United Kingdom.

出版信息

J Biol Chem. 2004 Aug 13;279(33):34763-9. doi: 10.1074/jbc.M403719200. Epub 2004 Jun 8.

Abstract

Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.

摘要

H-N-H核酸内切酶是一类参与多种生物学功能(包括内含子归巢和DNA修复)的酶,其金属依赖性机制存在争议。为了解决这个问题,我们确定了含有细菌毒素大肠杆菌素E9的H-N-H基序与Zn(2+)、Zn(2+).DNA和Mg(2+).DNA复合物的晶体结构。结构表明,活性位点的刚性V形结构在与DNA小沟结合时不会发生任何重大构象变化,并且无论哪种金属离子与酶结合,与核酸的相互作用都是相同的。可切割的磷酸基团通过将Arg-96-Glu-100盐桥插入小沟以及跨越金属位点的与DNA磷酸骨架的接触网络所导致的DNA扭曲,与基序的单个金属离子接触。Mg(2+)结合的结构揭示了一种不寻常的配位方案,涉及两个H-N-H组氨酸残基His-102和His-127。DNA切割机制可能与其他单金属离子依赖性核酸内切酶(如I-PpoI和Vvn)的机制有关,尽管在这些酶中,单个碱土金属离子由含氧化氨基酸配位。这些结构还解释了为什么H-N-H核酸内切酶在Zn(2+)存在下无活性,但与其他过渡金属离子(如Ni(2+))反应时具有活性。这是因为Zn(2+)离子通过第三个组氨酸His-131配位。“活性”过渡金属离子是那些由于His-131的脱离而与H-N-H基序结合较弱的离子,我们认为这允许水分子完成催化循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验