Suppr超能文献

基于基因表达数据和预测的细胞遗传学图谱对肾细胞癌进行稳健分类。

Robust classification of renal cell carcinoma based on gene expression data and predicted cytogenetic profiles.

作者信息

Furge Kyle A, Lucas Kerry A, Takahashi Masayuki, Sugimura Jun, Kort Eric J, Kanayama Hiro-omi, Kagawa Susumu, Hoekstra Philip, Curry John, Yang Ximing J, Teh Bin T

机构信息

Bioinformatics Special Program, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.

出版信息

Cancer Res. 2004 Jun 15;64(12):4117-21. doi: 10.1158/0008-5472.CAN-04-0534.

Abstract

Renal cell carcinoma (RCC) is a heterogeneous disease that includes several histologically distinct subtypes. The most common RCC subtypes are clear cell, papillary, and chromophobe, and recent gene expression profiling studies suggest that classification of RCC based on transcriptional signatures could be beneficial. Traditionally, however, patterns of chromosomal alterations have been used to assist in the molecular classification of RCC. The purpose of this study was to determine whether it was possible to develop a classification model for the three major RCC subtypes that utilizes gene expression profiles as the bases for both molecular genetic and cytogenetic classification. Gene expression profiles were first used to build an expression-based RCC classifier. The RCC gene expression profiles were then examined for the presence of regional gene expression biases. Regional expression biases are genetic intervals that contain a disproportionate number of genes that are coordinately up- or down-regulated. The presence of a regional gene expression bias often indicates the presence of a chromosomal abnormality. In this study, we demonstrate an expression-based classifier can distinguish between the three most common RCC subtypes in 99% of cases (n = 73). We also demonstrate that detection of regional expression biases accurately identifies cytogenetic features common to RCC. Additionally, the in silico-derived cytogenetic profiles could be used to classify 81% of cases. Taken together, these data demonstrate that it is possible to construct a robust classification model for RCC using both transcriptional and cytogenetic features derived from a gene expression profile.

摘要

肾细胞癌(RCC)是一种异质性疾病,包括几种组织学上不同的亚型。最常见的RCC亚型是透明细胞型、乳头状型和嫌色细胞型,最近的基因表达谱研究表明,基于转录特征对RCC进行分类可能是有益的。然而,传统上,染色体改变模式已被用于辅助RCC的分子分类。本研究的目的是确定是否有可能开发一种针对三种主要RCC亚型的分类模型,该模型利用基因表达谱作为分子遗传学和细胞遗传学分类的基础。首先使用基因表达谱构建基于表达的RCC分类器。然后检查RCC基因表达谱中是否存在区域基因表达偏差。区域表达偏差是指那些包含不成比例数量的协同上调或下调基因的遗传区间。区域基因表达偏差的存在通常表明存在染色体异常。在本研究中,我们证明基于表达的分类器在99%的病例(n = 73)中能够区分三种最常见的RCC亚型。我们还证明,区域表达偏差的检测能够准确识别RCC常见的细胞遗传学特征。此外,通过计算机模拟得出的细胞遗传学图谱可用于81%病例的分类。综上所述,这些数据表明,利用从基因表达谱中获得的转录和细胞遗传学特征构建一个强大的RCC分类模型是可能的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验