Suppr超能文献

马铃薯连作土壤中硫线磷微生物降解增强:验证与表征

Enhanced microbial degradation of cadusafos in soils from potato monoculture: demonstration and characterization.

作者信息

Karpouzas Dimitrios G, Karanasios Evangelos, Menkissoglu-Spiroudi Urania

机构信息

Laboratory of Pesticide Science, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 1678, Thessaloniki 54124, Greece.

出版信息

Chemosphere. 2004 Aug;56(6):549-59. doi: 10.1016/j.chemosphere.2004.04.019.

Abstract

Rapid degradation of cadusafos was evident in soils collected from previously-treated field sites from a potato monoculture area in northern Greece. The slower degradation of cadusafos observed in corresponding antibiotic-treated soils as well as in soils from an adjacent previously-untreated field demonstrated the microbial involvement in the rapid degradation of cadusafos in the soils from the previously-treated sites. Application of the non-specific antibacterial antibiotic chloramphenicol or of the Gram+ bacteria-inhibiting antibiotics penicillin + lyncomycin + vancomycin significantly inhibited the rapid biodegradation of cadusafos suggesting that soil bacteria and probably Gram+ bacteria are mainly responsible for the rapid biodegradation of cadusafos in the specific soil. Further experiments showed that the bacterial population of the cadusafos-adapted soil was also able to rapidly degrade the chemically related nematicide ethoprophos but not fenamiphos and oxamyl. This is the first report of the occurrence of enhanced biodegradation of cadusafos in potato fields. In addition, the finding of cross-enhancement between cadusafos and ethoprophos significantly reduces the number of available chemicals which could be alternated to prevent the development of enhanced biodegradation and thus intensifies the problem in potato monoculture areas like the one in northern Greece.

摘要

在从希腊北部马铃薯单作区先前处理过的田间地点采集的土壤中,可见硫线磷迅速降解。在相应的抗生素处理土壤以及相邻先前未处理田地的土壤中观察到硫线磷降解较慢,这表明微生物参与了先前处理过的地点土壤中硫线磷的快速降解。施用非特异性抗菌抗生素氯霉素或革兰氏阳性菌抑制抗生素青霉素+林可霉素+万古霉素显著抑制了硫线磷的快速生物降解,这表明土壤细菌,可能还有革兰氏阳性菌,是特定土壤中硫线磷快速生物降解的主要原因。进一步的实验表明,适应硫线磷的土壤中的细菌种群也能够快速降解化学相关的杀线虫剂丙线磷,但不能降解苯线磷和草肟威。这是关于马铃薯田中硫线磷生物降解增强现象的首次报道。此外,硫线磷和丙线磷之间交叉增强的发现显著减少了可用于防止生物降解增强的可用化学品数量,从而加剧了希腊北部这样的马铃薯单作区的问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验