Suppr超能文献

基于聚合物膜离子选择性和交叉敏感电极的电子舌用于饮料的定性分析。

Polymeric membrane ion-selective and cross-sensitive electrode-based electronic tongue for qualitative analysis of beverages.

作者信息

Ciosek Patrycja, Augustyniak Ewa, Wroblewski Wojciech

机构信息

Department of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.

出版信息

Analyst. 2004 Jul;129(7):639-44. doi: 10.1039/b401390e. Epub 2004 Jun 8.

Abstract

An electronic tongue based on the sensor array of polymeric membrane ion-selective electrodes combined with pattern recognition tools was applied to qualitative analysis of various brands of orange juice, tonic, and milk. The capability of this device to reliably discriminate between different brands of those products was presented. The tests of the system were performed using products of the same brand, but with different manufacture dates (and thus comparable by the term of taste). The fusion of two types of sensors-classical selective ones and partially selective in one versatile array, and working out the sensor array's response by means of principal component analysis and back propagation neural network methods allowed the discrimination between different brands of various beverages with very high accuracy (90-100%). The real performance of the electronic tongue was evaluated applying testing samples from another manufacture lot, than the samples used in the learning set.

摘要

一种基于聚合物膜离子选择性电极传感器阵列并结合模式识别工具的电子舌被应用于对不同品牌橙汁、滋补品和牛奶的定性分析。展示了该设备可靠区分这些产品不同品牌的能力。系统测试使用同一品牌但不同生产日期(因此在口感方面具有可比性)的产品进行。将两种类型的传感器——经典选择性传感器和部分选择性传感器融合在一个通用阵列中,并通过主成分分析和反向传播神经网络方法得出传感器阵列的响应,从而能够以非常高的准确率(90 - 100%)区分不同品牌的各种饮料。电子舌的实际性能通过应用来自与学习集中使用的样本不同生产批次的测试样本进行评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验