Suppr超能文献

ConPred II:一种用于获得具有高可靠性跨膜拓扑模型的一致性预测方法。

ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability.

作者信息

Arai Masafumi, Mitsuke Hironori, Ikeda Masami, Xia Jun-Xiong, Kikuchi Takashi, Satake Masanobu, Shimizu Toshio

机构信息

Department of Electronic and Information System Engineering, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan.

出版信息

Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W390-3. doi: 10.1093/nar/gkh380.

Abstract

ConPred II (http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/) is a server for the prediction of transmembrane (TM) topology [i.e. the number of TM segments (TMSs), TMS positions and N-tail location] based on a consensus approach by combining the results of several proposed methods. The ConPred II system is constructed from ConPred_elite and ConPred_all (previously named ConPred), proposed earlier by our group. The prediction accuracy of ConPred_elite is almost 100%, which is achieved by sacrificing the prediction coverage (20-30%). ConPred_all predicts TM topologies for all the input sequences with accuracies improved by up to 11% over individual proposed methods. In the ConPred II system, the TM topology prediction of input TM protein sequences is executed following a two-step process: (i) input sequences are first run through the ConPred_elite program; (ii) sequences for which ConPred_elite does not give the TM topology are delivered to the ConPred_all program for TM topology prediction. Users can get access to the ConPred II system automatically by submitting sequences to the server. The ConPred II server will return the predicted TM topology models and graphical representations of their contents (hydropathy plots, helical wheel diagrams of predicted TMSs and snake-like diagrams).

摘要

ConPred II(http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/)是一个基于共识方法的跨膜(TM)拓扑结构预测服务器,通过结合几种已提出方法的结果来预测跨膜片段数量、跨膜片段位置和N端位置。ConPred II系统由我们团队早期提出的ConPred_elite和ConPred_all(以前称为ConPred)构建而成。ConPred_elite的预测准确率几乎达到100%,但牺牲了预测覆盖率(20%-30%)。ConPred_all为所有输入序列预测TM拓扑结构,其准确率比单个已提出的方法提高了11%。在ConPred II系统中,输入的TM蛋白序列的TM拓扑结构预测分两步进行:(i)输入序列首先通过ConPred_elite程序运行;(ii)ConPred_elite未给出TM拓扑结构的序列被传送到ConPred_all程序进行TM拓扑结构预测。用户通过向服务器提交序列可以自动访问ConPred II系统。ConPred II服务器将返回预测的TM拓扑结构模型及其内容的图形表示(亲水性图、预测跨膜片段的螺旋轮图和蛇形图)。

相似文献

6
TOPCONS: consensus prediction of membrane protein topology.TOPCONS:膜蛋白拓扑结构的一致性预测
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W465-8. doi: 10.1093/nar/gkp363. Epub 2009 May 8.
10
CCTOP: a Consensus Constrained TOPology prediction web server.CCTOP:一个共识约束拓扑预测网络服务器。
Nucleic Acids Res. 2015 Jul 1;43(W1):W408-12. doi: 10.1093/nar/gkv451. Epub 2015 May 5.

引用本文的文献

7
CCTOP: a Consensus Constrained TOPology prediction web server.CCTOP:一个共识约束拓扑预测网络服务器。
Nucleic Acids Res. 2015 Jul 1;43(W1):W408-12. doi: 10.1093/nar/gkv451. Epub 2015 May 5.

本文引用的文献

7
Transmembrane helix predictions revisited.跨膜螺旋预测再探讨。
Protein Sci. 2002 Dec;11(12):2774-91. doi: 10.1110/ps.0214502.
9
The HMMTOP transmembrane topology prediction server.HMMTOP跨膜拓扑结构预测服务器。
Bioinformatics. 2001 Sep;17(9):849-50. doi: 10.1093/bioinformatics/17.9.849.
10
Evaluation of methods for the prediction of membrane spanning regions.膜跨越区域预测方法的评估
Bioinformatics. 2001 Jul;17(7):646-53. doi: 10.1093/bioinformatics/17.7.646.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验