Hemmingsen Lars, Olsen Lars, Antony Jens, Sauer Stephan P A
Quantum Protein Centre, Department of Physics, The Technical University of Denmark, Building 309, 2800 Lyngby, Denmark.
J Biol Inorg Chem. 2004 Jul;9(5):591-9. doi: 10.1007/s00775-004-0553-0. Epub 2004 Jun 19.
113Cd isotropic NMR shieldings are calculated for a number of metal ion binding sites in proteins, using the GIAO-B3LYP and GIAO-HF methods with the uncontracted (19s15p9d4f) polarized basis set of Kellö and Sadlej on cadmium and 6-31G(d) on the ligands. The results compare favorably with experimental data, indicating that first principle calculations are a useful tool for structural interpretation of (113)Cd chemical shift data from metal ion containing proteins. The effect of different ligand types (thiolate, imidazole, water, and monodentate carboxylate), coordination number, and deviations of the coordination geometry from ideal structures is evaluated. In particular, the ligand type and coordination number are important factors, but also changes in cadmium-ligand bond lengths may cause significant changes of the chemical shift.
使用GIAO - B3LYP和GIAO - HF方法,采用Kellö和Sadlej针对镉的未收缩(19s15p9d4f)极化基组以及针对配体的6 - 31G(d)基组,计算了蛋白质中多个金属离子结合位点的113Cd各向同性核磁共振屏蔽。结果与实验数据相比具有优势,表明第一性原理计算是解释含金属离子蛋白质的(113)Cd化学位移数据结构的有用工具。评估了不同配体类型(硫醇盐、咪唑、水和单齿羧酸盐)、配位数以及配位几何结构与理想结构的偏差的影响。特别是,配体类型和配位数是重要因素,但镉 - 配体键长的变化也可能导致化学位移的显著变化。