Zhou Xiaolan, Vize Peter D
Department of Biological Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
Dev Biol. 2004 Jul 15;271(2):322-38. doi: 10.1016/j.ydbio.2004.03.036.
The embryonic kidneys of larval aquatic vertebrates such as fish and frogs serve as excellent model systems for exploring the early development of nephric organs. These experimental systems can easily be manipulated by microsurgery, microinjection, genetics, or combinations of these approaches. However, little is known about how physiologically similar these simple kidneys are to the more complex mammalian adult kidneys. In addition, almost nothing is known about proximo-distal patterning of nephrons in any organism. In order begin to explore the physiological specialization of the pronephric tubules along the proximo-distal axis, a combination of uptake assays using fluorescently tagged proteins, LDL particles and dextrans, and an informatics-targeted in situ screen for transport proteins have been performed on embryos of the frog, Xenopus laevis. Genes identified to be expressed within unique subdomains of the pronephric tubules include an ABC transporter, two amino acid cotransporters, two sodium bicarbonate cotransporters, a novel sodium glucose cotransporter, a sodium potassium chloride cotransporter (NKCC2), a sodium chloride organic solute cotransporter (ROSIT), and a zinc transporter. A novel combination of colorimetric and fluorescent whole-mount in situ hybridization (FCIS) was used to precisely map the expression domain of each gene within the pronephros. These data indicate specialized physiological function and define multiple novel segments of the pronephric tubules, which contain at least six distinct transport domains. Uptake studies identified functional transport domains and also demonstrated that early glomeral leakage can allow visualization of protein movement into the pronephric tubules and thus establish a system for investigating experimentally induced proteinuria and glomerulonephritis.
鱼类和青蛙等幼体水生脊椎动物的胚胎肾,是探索肾器官早期发育的绝佳模型系统。这些实验系统可通过显微手术、显微注射、遗传学或这些方法的组合轻松操控。然而,对于这些简单的肾脏在生理上与更复杂的成年哺乳动物肾脏有多相似,人们知之甚少。此外,对于任何生物体中肾单位的近远模式,几乎一无所知。为了开始探索原肾管沿近远轴的生理特化,已对非洲爪蟾胚胎进行了一系列研究,包括使用荧光标记蛋白、低密度脂蛋白颗粒和葡聚糖的摄取分析,以及针对转运蛋白的信息学靶向原位筛选。已确定在原肾管独特亚域内表达的基因包括一种ABC转运蛋白、两种氨基酸共转运蛋白、两种碳酸氢钠共转运蛋白、一种新型钠葡萄糖共转运蛋白、一种钠钾氯共转运蛋白(NKCC2)、一种氯化钠有机溶质共转运蛋白(ROSIT)和一种锌转运蛋白。一种比色法和荧光全组织原位杂交(FCIS)的新组合被用于精确绘制每个基因在原肾中的表达域。这些数据表明了特殊的生理功能,并定义了原肾管的多个新节段,其中包含至少六个不同的转运域。摄取研究确定了功能性转运域,还表明早期肾小球渗漏可使蛋白质进入原肾管的运动可视化,从而建立了一个用于研究实验性蛋白尿和肾小球肾炎的系统。