Suppr超能文献

Adaptation of soil biological nitrification to heavy metals.

作者信息

Rusk James A, Hamon Rebecca E, Stevens Daryl P, McLaughlin Mike J

机构信息

School of Earth and Environmental Sciences, Faculty of Sciences, University of Adelaide, Waite Campus, South Australia, Australia 5005.

出版信息

Environ Sci Technol. 2004 Jun 1;38(11):3092-7. doi: 10.1021/es035278g.

Abstract

The adaptive response of soil biological nitrification to Zn and Pb was assessed using an in situ method we have developed. The method is based on reinoculating a sterilized metal contaminated soil with the same soil that is either uncontaminated or has been incubated with metal. This approach excludes the potentially confounding effects of metal aging reactions in soils. We found added Zn concentrations which gave rise to a decrease in nitrification to 50% that of the uncontaminated soil (i.e. EC50) of 210 mg/kg for communities not previously exposed to Zn and 850 mg/kg for communities exposed to Zn for 17 months, indicating that significant adaptation of the community to Zn had occurred. Similarly, this protocol was able to demonstrate adaptation of soil biological nitrification to Pb, with EC50 values of 1960 and 3150 mg/kg for the unexposed and exposed treatments, respectively. Exposure of unadapted and adapted microbial communities to a combination of Zn and Cd showed that the presence of Cd did not lead to greater toxicity in either community. Adapted communities were not more sensitive to decreases in soil pH than unadapted communities. Prior exposure to Zn was found to confer significantly greater tolerance of the community to Pb. Prior exposure to Pb similarly conferred significantly greater tolerance of the community to Zn. Implications of the adaptive capacity of soil microbes to the development of critical threshold values for heavy metals in soil based on ecotoxicity assessments are discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验