Suppr超能文献

Reactive transport modeling of column experiments for the remediation of acid mine drainage.

作者信息

Amos Richard T, Mayer K Ulrich, Blowes David W, Ptacek Carol J

机构信息

Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada.

出版信息

Environ Sci Technol. 2004 Jun 1;38(11):3131-8. doi: 10.1021/es0349608.

Abstract

Reactive transport modeling was used to evaluate the performance of two similar column experiments. The experiments were designed to simulate the treatment of acid mine drainage through microbially mediated sulfate reduction and subsequent sulfide mineral precipitation by means of an organic carbon permeable reactive barrier. Principal reactions considered in the simulations include microbially mediated reduction of sulfate by organic matter, mineral dissolution/precipitation reactions, and aqueous complexation/hydrolysis reactions. Simulations of column 1, which contained composted leaf mulch, wood chips, sawdust, and sewage sludge as an organic carbon source, accurately predicted sulfate concentrations in the column effluent throughout the duration of the experiment using a single fixed rate constant for sulfate reduction of 6.9 x 10(-9) mol L(-1) s(-1). Using the same reduction rate for column 2, which contained only composted leaf mulch and sawdust as an organic carbon source, sulfate concentrations at the column outlet were overpredicted at late times, suggesting that sulfate reduction rates increased over the duration of the column experiment and that microbial growth kinetics may have played an important role. These modeling results suggest that the reactivity of the organic carbon treatment material with respect to sulfate reduction does not significantly decrease over the duration of the 14-month experiments. The ability of the columns to remove ferrous iron appears to be strongly influenced by the precipitation of siderite, which is enhanced by the dissolution of calcite. The simulations indicate that while calcite was available in the column, up to 0.02 mol L(-1) of ferrous iron was removed from solution as siderite and mackinawite. Later in the experiments after approximately 300 d, when calcite was depleted from the columns, mackinawite became the predominant iron sink. The ability of the column to remove ferrous iron as mackinawite was estimated to be approximately 0.005 mol L(-1) for column 1. As the precipitation of mackinawite is sulfide limited at later times, the amount of iron removed will ultimately depend on the reactivity of the organic mixture and the amount of sulfate reduced.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验