Hillenbrand Rainer
Nano-Photonics Group, Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany.
Ultramicroscopy. 2004 Aug;100(3-4):421-7. doi: 10.1016/j.ultramic.2003.11.017.
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10nm scale, independent of the wavelength used (lambda=633 nm and 10 microm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics-a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.
在传统显微镜中,衍射将空间分辨率或光学电路的尺寸限制在照明波长的一半左右。扫描近场显微镜可以通过利用靠近任何被照物体存在的倏逝近场来克服这一限制。我们使用一种散射型近场光学显微镜(s-SNOM),它利用原子力显微镜(AFM)的被照金属尖端作为散射近场探针。所呈现的图像直接证明了s-SNOM能够在10纳米尺度的空间分辨率下进行光学成像,与所使用的波长(λ = 633纳米和10微米)无关。在特定的中红外频率下操作显微镜时,我们在诸如SiC和Si3N4等平面极性晶体上发现了尖端诱导的声子 - 极化激元共振。作为任何极性材料的光谱指纹,这种声子增强的近场相互作用在纳米级分辨率的无损、材料特异性红外显微镜中具有巨大的适用性。s-SNOM研究纳米结构中表面极化激元本征场的潜力为声子光子学的发展打开了大门——一种提议的红外纳米技术,它使用局域化或传播的表面声子极化激元在纳米级器件中探测、操纵和引导红外光,类似于等离子体光子学。