Nanooptics Group, CIC nanoGUNE Consolider, E-20018 Donostia, San Sebastian, Spain.
Nanotechnology. 2010 Jun 11;21(23):235702. doi: 10.1088/0957-4484/21/23/235702. Epub 2010 May 13.
We demonstrate the application of scattering-type scanning near-field optical microscopy (s-SNOM) for infrared (IR) spectroscopic material recognition in state-of-the-art semiconductor devices. In particular, we employ s-SNOM for imaging of industrial CMOS transistors with a resolution better than 20 nm, which allows for the first time IR spectroscopic recognition of amorphous SiO(2) and Si(3)N(4) components in a single transistor device. The experimentally recorded near-field spectral signature of amorphous SiO(2) shows excellent agreement with model calculations based on literature dielectric values, verifying that the characteristic near-field contrasts of SiO(2) stem from a phonon-polariton resonant near-field interaction between the probing tip and the SiO(2) nanostructures. Local material recognition by s-SNOM in combination with its capabilities of contact-free and non-invasive conductivity- and strain-mapping makes IR near-field microscopy a versatile metrology technique for nanoscale material characterization and semiconductor device analysis with application potential in research and development, failure analysis and reverse engineering.
我们展示了散射型扫描近场光学显微镜(s-SNOM)在最先进的半导体器件中进行红外(IR)光谱材料识别的应用。特别是,我们使用 s-SNOM 对分辨率优于 20nm 的工业 CMOS 晶体管进行成像,这首次允许在单个晶体管器件中对非晶态 SiO(2)和 Si(3)N(4)组件进行 IR 光谱识别。非晶态 SiO(2)的实验记录的近场光谱特征与基于文献介电值的模型计算非常吻合,验证了 SiO(2)的特征近场对比度源自探测尖端与 SiO(2)纳米结构之间的声子极化激元共振近场相互作用。s-SNOM 的局部材料识别与非接触式和非侵入式电导率和应变映射相结合,使 IR 近场显微镜成为纳米级材料特性和半导体器件分析的多功能计量技术,具有在研究和开发、故障分析和逆向工程中的应用潜力。