Suppr超能文献

施氏假单胞菌中的两个C-P裂解酶操纵子及其在膦酸盐、亚磷酸盐和次磷酸盐氧化中的作用。

Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite.

作者信息

White Andrea K, Metcalf William W

机构信息

Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA.

出版信息

J Bacteriol. 2004 Jul;186(14):4730-9. doi: 10.1128/JB.186.14.4730-4739.2004.

Abstract

DNA sequencing and analysis of two distinct C-P lyase operons in Pseudomonas stutzeri WM88 were completed. The htxABCDEFGHIJKLMN operon encodes a hypophosphite-2-oxoglutarate dioxygenase (HtxA), whereas the predicted amino acid sequences of HtxB to HtxN are each homologous to the components of the Escherichia coli phn operon, which encodes C-P lyase, although homologs of E. coli phnF and phnO are absent. The genes in the htx operon are cotranscribed based on gene organization, and the presence of the intergenic sequences is verified by reverse transcription-PCR with total RNA. Deletion of the htx locus does not affect the ability of P. stutzeri to grow on phosphonates, indicating the presence of an additional C-P lyase pathway in this organism. To identify the genes comprising this pathway, a Deltahtx strain was mutagenized and one mutant lacking the ability to grow on methylphosphonate as the sole P source was isolated. A ca.-10.6-kbp region surrounding the transposon insertion site of this mutant was sequenced, revealing 13 open reading frames, designated phnCDEFGHIJKLMNP, which were homologous to the E. coli phn genes. Deletion of both the htx and phn operons of P. stutzeri abolishes all growth on methylphosphonate and aminoethylphosphonate. Both operons individually support growth on methylphosphonate; however, the phn operon supports growth on aminoethylphosphonate and phosphite, as well. The substrate ranges of both C-P lyases are limited, as growth on other phosphonate compounds, including glyphosate and phenylphosphonate, was not observed.

摘要

完成了对斯氏假单胞菌WM88中两个不同的C-P裂解酶操纵子的DNA测序和分析。htxABCDEFGHIJKLMN操纵子编码一种次磷酸盐-2-氧代戊二酸双加氧酶(HtxA),而HtxB至HtxN的预测氨基酸序列分别与大肠杆菌phn操纵子的组分同源,该操纵子编码C-P裂解酶,但缺少大肠杆菌phnF和phnO的同源物。根据基因组织情况,htx操纵子中的基因是共转录的,并且通过用总RNA进行逆转录PCR验证了基因间序列的存在。htx基因座的缺失不影响斯氏假单胞菌在膦酸盐上生长的能力,表明该生物体中存在另外一条C-P裂解酶途径。为了鉴定构成该途径的基因,对Δhtx菌株进行诱变,分离出一个不能以甲基膦酸盐作为唯一磷源生长的突变体。对该突变体转座子插入位点周围约10.6-kbp的区域进行测序,揭示了13个开放阅读框,命名为phnCDEFGHIJKLMNP,它们与大肠杆菌phn基因同源。斯氏假单胞菌的htx和phn操纵子都缺失后,会消除在甲基膦酸盐和氨乙基膦酸盐上的所有生长。两个操纵子单独都支持在甲基膦酸盐上生长;然而,phn操纵子也支持在氨乙基膦酸盐和亚磷酸盐上生长。两种C-P裂解酶的底物范围都有限,因为未观察到在其他膦酸盐化合物(包括草甘膦和苯膦酸盐)上的生长。

相似文献

2
The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the pho regulon.
J Bacteriol. 2004 Sep;186(17):5876-82. doi: 10.1128/JB.186.17.5876-5882.2004.
3
Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88.
J Bacteriol. 1998 Nov;180(21):5547-58. doi: 10.1128/JB.180.21.5547-5558.1998.
5
Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
Microbiol Mol Biol Rev. 2014 Mar;78(1):176-97. doi: 10.1128/MMBR.00040-13.
6
Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products.
J Bacteriol. 1999 Jan;181(2):389-95. doi: 10.1128/JB.181.2.389-395.1999.
9
Carbon-Phosphorus Lyase-the State of the Art.
Appl Biochem Biotechnol. 2020 Apr;190(4):1525-1552. doi: 10.1007/s12010-019-03161-4. Epub 2019 Dec 2.
10
Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation.
FEMS Microbiol Lett. 1992 Dec 15;100(1-3):133-9. doi: 10.1111/j.1574-6968.1992.tb14031.x.

引用本文的文献

1
Soil Microbial Adaptation and Biogeochemical Feedback in Degraded Alpine Meadows of the Qinghai-Tibetan Plateau.
Microorganisms. 2025 May 16;13(5):1142. doi: 10.3390/microorganisms13051142.
3
Impact of glyphosate and glyphosate-based herbicides on phyllospheric Methylobacterium.
BMC Plant Biol. 2024 Feb 19;24(1):119. doi: 10.1186/s12870-024-04818-x.
4
On the potential roles of phosphorus in the early evolution of energy metabolism.
Front Microbiol. 2023 Aug 2;14:1239189. doi: 10.3389/fmicb.2023.1239189. eCollection 2023.
5
Identification of microbial metabolic functional guilds from large genomic datasets.
Front Microbiol. 2023 Jun 30;14:1197329. doi: 10.3389/fmicb.2023.1197329. eCollection 2023.
8
Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation.
Environ Microbiol Rep. 2022 Feb;14(1):3-24. doi: 10.1111/1758-2229.13040. Epub 2022 Jan 10.

本文引用的文献

2
Microbial oxidation and utilization of orthophosphite during growth.
J Bacteriol. 1960 Aug;80(2):237-41. doi: 10.1128/jb.80.2.237-241.1960.
7
Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88.
J Biol Chem. 2001 May 18;276(20):17429-36. doi: 10.1074/jbc.M011764200. Epub 2001 Feb 22.
8
Phosphite oxidation by sulphate reduction.
Nature. 2000 Jul 6;406(6791):37. doi: 10.1038/35017644.
9
Bioactive natural products with carbon-phosphorus bonds and their biosynthesis.
Nat Prod Rep. 1999 Oct;16(5):589-96. doi: 10.1039/a809398i.
10
Rhizobium (Sinorhizobium) meliloti phn genes: characterization and identification of their protein products.
J Bacteriol. 1999 Jan;181(2):389-95. doi: 10.1128/JB.181.2.389-395.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验