Andersen Pernille, Kragelund Birthe B, Olsen Addie N, Larsen Flemming H, Chua Nam-Hai, Poulsen Flemming M, Skriver Karen
Institute of Molecular Biology, University of Copenhagen, DK-1353 Copenhagen K, Denmark.
J Biol Chem. 2004 Sep 17;279(38):40053-61. doi: 10.1074/jbc.M405057200. Epub 2004 Jun 30.
U-box proteins, as well as other proteins involved in regulated protein degradation, are apparently over-represented in Arabidopsis compared with other model eukaryotes. The Arabidopsis protein AtPUB14 contains a typical U-box domain followed by an Armadillo repeat region, a domain organization that is frequently found in plant U-box proteins. In vitro ubiquitination assays demonstrated that AtPUB14 functions as an E3 ubiquitin ligase with specific E2 ubiquitin-conjugating enzymes. The structure of the AtPUB14 U-box domain was determined by NMR spectroscopy. It adopts the betabetaalphabeta fold of the Prp19p U-box and RING finger domains. In these proteins, conserved hydrophobic residues form a putative E2-binding cleft. By contrast, they contain no common polar E2 binding site motif. Two hydrophobic cores stabilize the AtPUB14 U-box fold, and hydrogen bonds and salt bridges interconnect the residues corresponding to zinc ion-coordinating residues in RING domains. Residues from a C-terminal alpha-helix interact with the core domain and contribute to stabilization. The Prp19p U-box lacks a corresponding C-terminal alpha-helix. Chemical shift analysis suggested that aromatic residues exposed at the N terminus and the C-terminal alpha-helix of the AtPUB14 U-box participate in dimerization. Thus, AtPUB14 may form a biologically relevant dimer. This is the first plant U-box structure to be determined, and it provides a model for studies of the many plant U-box proteins and their interactions. Structural insight into these interactions is important, because ubiquitin-dependent protein degradation is a prevalent regulatory mechanism in plants.
与其他模式真核生物相比,U-box蛋白以及其他参与调控蛋白降解的蛋白在拟南芥中明显过量存在。拟南芥蛋白AtPUB14包含一个典型的U-box结构域,后面跟着一个犰狳重复区域,这种结构域组织在植物U-box蛋白中经常出现。体外泛素化分析表明,AtPUB14与特定的E2泛素结合酶一起作为E3泛素连接酶发挥作用。AtPUB14 U-box结构域的结构通过核磁共振光谱确定。它采用了Prp19p U-box和RING指结构域的betabetaalphabeta折叠。在这些蛋白中,保守的疏水残基形成一个假定的E2结合裂隙。相比之下,它们不包含常见的极性E2结合位点基序。两个疏水核心稳定了AtPUB14 U-box折叠,氢键和盐桥连接了与RING结构域中锌离子配位残基相对应的残基。来自C末端α螺旋的残基与核心结构域相互作用并有助于稳定。Prp19p U-box缺乏相应的C末端α螺旋。化学位移分析表明,AtPUB14 U-box的N末端和C末端α螺旋处暴露的芳香族残基参与二聚化。因此,AtPUB14可能形成生物学上相关的二聚体。这是第一个被确定的植物U-box结构,它为研究众多植物U-box蛋白及其相互作用提供了一个模型。对这些相互作用的结构洞察很重要,因为泛素依赖性蛋白降解是植物中一种普遍的调控机制。