Fickert Peter, Fuchsbichler Andrea, Wagner Martin, Zollner Gernot, Kaser Arthur, Tilg Herbert, Krause Robert, Lammert Frank, Langner Cord, Zatloukal Kurt, Marschall Hanns-Ulrich, Denk Helmut, Trauner Michael
Deparment of Medicine, Medical University, Graz, Austria.
Gastroenterology. 2004 Jul;127(1):261-74. doi: 10.1053/j.gastro.2004.04.009.
BACKGROUND & AIMS: Because the mechanisms leading to bile duct damage in sclerosing cholangitis are unknown, we aimed to determine the pathogenesis of bile duct injury in multidrug resistance gene (Mdr2) (Abcb4) knockout mice (Mdr2(-/-)) as a novel model of the disease.
Mdr2(-/-) and wild-type controls (Mdr2(+/+)) were studied at 2, 4, and 8 weeks of age. Liver histology, ultrastructure, immunofluorescence microscopy (to study inflammatory cells, tight junction protein ZO-1, basement membrane protein laminin, fluorescence-labeled ursodeoxycholic acid), immunohistochemistry (for alpha-smooth muscle actin, nitrotyrosine), sirius red staining, bacterial cultures of intra-abdominal organs, and polymerase chain reaction (PCR) for Helicobacter bilis DNA were compared between both genotypes. Hepatic cytokine expression was determined by reverse-transcription PCR.
Bile ducts of Mdr2(-/-) showed disrupted tight junctions and basement membranes, bile acid leakage into portal tracts, induction of a portal inflammatory (CD11b, CD4-positive) infiltrate, and activation of proinflammatory (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta) and profibrogenic cytokines (transforming growth factor [TGF]-beta1). This resulted in activation of periductal myofibroblasts, leading to periductal fibrosis, separating the peribiliary plexus from bile duct epithelial cells and, finally, causing atrophy and death of the bile duct epithelium. Bacterial translocation was not increased and H. bilis was not detectable in Mdr2(-/-).
Sclerosing cholangitis in Mdr2(-/-) mice is a multistep process with regurgitation of bile from leaky ducts into the portal tracts, leading to induction of periductal inflammation, followed by activation of periductal fibrogenesis, finally causing obliterative cholangitis owing to atrophy and death of bile duct epithelial cells.
由于硬化性胆管炎导致胆管损伤的机制尚不清楚,我们旨在确定多药耐药基因(Mdr2)(Abcb4)敲除小鼠(Mdr2(-/-))作为该疾病的新型模型中胆管损伤的发病机制。
对2周、4周和8周龄的Mdr2(-/-)和野生型对照(Mdr2(+/+))进行研究。比较两种基因型之间的肝脏组织学、超微结构、免疫荧光显微镜检查(用于研究炎症细胞、紧密连接蛋白ZO-1、基底膜蛋白层粘连蛋白、荧光标记的熊去氧胆酸)、免疫组织化学(用于α-平滑肌肌动蛋白、硝基酪氨酸)、天狼星红染色、腹腔内器官的细菌培养以及胆汁幽门螺杆菌DNA的聚合酶链反应(PCR)。通过逆转录PCR测定肝脏细胞因子表达。
Mdr2(-/-)的胆管显示紧密连接和基底膜破坏、胆汁酸渗漏到门管区、诱导门管区炎症(CD11b、CD4阳性)浸润以及促炎(肿瘤坏死因子 [TNF]-α、白细胞介素 [IL]-1β)和促纤维化细胞因子(转化生长因子 [TGF]-β1)的激活。这导致导管周围肌成纤维细胞活化,导致导管周围纤维化,并使胆小管丛与胆管上皮细胞分离,最终导致胆管上皮细胞萎缩和死亡。Mdr2(-/-)中细菌易位未增加,未检测到胆汁幽门螺杆菌。
Mdr2(-/-)小鼠的硬化性胆管炎是一个多步骤过程,胆汁从渗漏的胆管反流至门管区,导致导管周围炎症的诱导,随后是导管周围纤维生成的激活,最终由于胆管上皮细胞萎缩和死亡导致闭塞性胆管炎。