Suppr超能文献

硫醇盐阴离子形成的动力学特征及活化微粒体谷胱甘肽转移酶1的化学催化作用

Kinetic characterization of thiolate anion formation and chemical catalysis of activated microsomal glutathione transferase 1.

作者信息

Svensson Richard, Alander Johan, Armstrong Richard N, Morgenstern Ralf

机构信息

Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.

出版信息

Biochemistry. 2004 Jul 13;43(27):8869-77. doi: 10.1021/bi0492511.

Abstract

Microsomal glutathione transferase 1 (MGST1) displays the unique ability to be activated, up to 30-fold, by the reaction with sulfhydryl reagents, e.g., N-ethylmaleimide. Analysis of glutathione (GSH) thiolate formation, which occurs upon mixing activated MGST1 with GSH, reveals biphasic kinetics, where the rapid phase dominated at higher GSH concentrations. The kinetic behavior suggests a two-step mechanism consisting of a rapid GSH-binding step (K(D)(GSH) approximately 10 mM), followed by slower formation of thiolate (k(2) approximately 10 s(-1)). The release rate (or protonation of the enzyme GSH thiolate complex) of GS(-) was slow (k(-2) = 0.016 s(-1)), consistent with overall tight binding of GSH. Electrophilic second substrates react rapidly with the E*GS(-) complex, and again, a two-step mechanism is suggested. In comparison to the unactivated enzyme [Morgenstern et al. (2001) Biochemistry 40, 3378-3384], the mechanisms of GSH thiolate formation and electrophile interaction are similar; however, thiolate anion formation is enhanced 30-fold in the activated enzyme, contributing to an increased k(cat) (3.6 s(-1)). Interestingly, in the activated enzyme, thiolate formation and proton release from the enzyme are not strictly coupled, because proton release (as well as k(cat)) was found to be approximately 4 times slower than GSH thiolate formation in an unbuffered system. Solvent kinetic isotope effect measurements demonstrated a 2-fold decrease in the rate constant (k(2)) for thiolate formation and k(cat) (in the reaction with 1-chloro-2,4-dinitrobenzene) for both unactivated and activated MGST1. This indicates that thiolate formation contributes to k(cat) for the activated enzyme, as suggested previously for unactivated MGST1. The stoichiometry of thiolate formation, proton release, and burst kinetics suggested utilization of one GSH molecule per enzyme trimer.

摘要

微粒体谷胱甘肽转移酶1(MGST1)具有独特的能力,可通过与巯基试剂(如N - 乙基马来酰亚胺)反应而被激活,激活程度可达30倍。对活化的MGST1与谷胱甘肽(GSH)混合时发生的谷胱甘肽硫醇盐形成的分析揭示了双相动力学,其中快速相在较高GSH浓度下占主导。这种动力学行为表明存在一个两步机制,包括快速的GSH结合步骤(K(D)(GSH)约为10 mM),随后是较慢的硫醇盐形成(k(2)约为10 s(-1))。GS(-)的释放速率(或酶 - GSH硫醇盐复合物的质子化)较慢(k(-2) = 0.016 s(-1)),这与GSH的整体紧密结合一致。亲电子的第二底物与E*GS(-)复合物快速反应,同样表明存在一个两步机制。与未活化的酶相比[摩根斯特恩等人(《生物化学》,2001年,第40卷,3378 - 3384页)],GSH硫醇盐形成和亲电子试剂相互作用的机制相似;然而,活化酶中硫醇盐阴离子的形成增强了30倍,导致k(cat)增加(3.6 s(-1))。有趣的是,在活化酶中,硫醇盐形成和酶的质子释放并不严格偶联,因为在无缓冲系统中发现质子释放(以及k(cat))比GSH硫醇盐形成慢约4倍。溶剂动力学同位素效应测量表明,未活化和活化的MGST1在硫醇盐形成的速率常数(k(2))以及与1 - 氯 - 2,4 - 二硝基苯反应中的k(cat)均降低了2倍。这表明硫醇盐形成对活化酶的k(cat)有贡献,正如之前对未活化MGST1所提出的那样。硫醇盐形成、质子释放和爆发动力学的化学计量表明每个酶三聚体利用一个GSH分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验