Suppr超能文献

RNA病毒φ6中的上位性及其与稳健性的关系

Epistasis and its relationship to canalization in the RNA virus phi 6.

作者信息

Burch Christina L, Chao Lin

机构信息

Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.

出版信息

Genetics. 2004 Jun;167(2):559-67. doi: 10.1534/genetics.103.021196.

Abstract

Although deleterious mutations are believed to play a critical role in evolution, assessing their realized effect has been difficult. A key parameter governing the effect of deleterious mutations is the nature of epistasis, the interaction between the mutations. RNA viruses should provide one of the best systems for investigating the nature of epistasis because the high mutation rate allows a thorough investigation of mutational effects and interactions. Nonetheless, previous investigations of RNA viruses by S. Crotty and co-workers and by S. F. Elena have been unable to detect a significant effect of epistasis. Here we provide evidence that positive epistasis is characteristic of deleterious mutations in the RNA bacteriophage phi 6. We estimated the effects of deleterious mutations by performing mutation-accumulation experiments on five viral genotypes of decreasing fitness. We inferred positive epistasis because viral genotypes with low fitness were found to be less sensitive to deleterious mutations. We further examined environmental sensitivity in these genotypes and found that low-fitness genotypes were also less sensitive to environmental perturbations. Our results suggest that even random mutations impact the degree of canalization, the buffering of a phenotype against genetic and environmental perturbations. In addition, our results suggest that genetic and environmental canalization have the same developmental basis and finally that an understanding of the nature of epistasis may first require an understanding of the nature of canalization.

摘要

尽管有害突变被认为在进化中起着关键作用,但评估它们实际产生的影响却很困难。决定有害突变影响的一个关键参数是上位性的性质,即突变之间的相互作用。RNA病毒应该是研究上位性性质的最佳系统之一,因为其高突变率能够对突变效应和相互作用进行全面研究。然而,此前S. 克罗蒂及其同事以及S. F. 埃琳娜对RNA病毒的研究未能检测到上位性的显著影响。在此,我们提供证据表明,正上位性是RNA噬菌体φ6中有害突变的特征。我们通过对五种适应性逐渐降低的病毒基因型进行突变积累实验,估计了有害突变的影响。我们推断存在正上位性,因为发现适应性低的病毒基因型对有害突变的敏感性较低。我们进一步研究了这些基因型对环境的敏感性,发现低适应性基因型对环境扰动也较不敏感。我们的结果表明,即使是随机突变也会影响稳态化程度,即表型对遗传和环境扰动的缓冲作用。此外,我们的结果表明,遗传稳态化和环境稳态化具有相同的发育基础,最终,对上位性本质的理解可能首先需要对稳态化本质的理解。

相似文献

1
Epistasis and its relationship to canalization in the RNA virus phi 6.
Genetics. 2004 Jun;167(2):559-67. doi: 10.1534/genetics.103.021196.
2
Existing Host Range Mutations Constrain Further Emergence of RNA Viruses.
J Virol. 2019 Feb 5;93(4). doi: 10.1128/JVI.01385-18. Print 2019 Feb 15.
3
Evolution of mutational robustness in an RNA virus.
PLoS Biol. 2005 Nov;3(11):e381. doi: 10.1371/journal.pbio.0030381. Epub 2005 Nov 1.
4
The impact of high-order epistasis in the within-host fitness of a positive-sense plant RNA virus.
J Evol Biol. 2015 Dec;28(12):2236-47. doi: 10.1111/jeb.12748. Epub 2015 Sep 22.
5
Pleiotropic costs of niche expansion in the RNA bacteriophage phi 6.
Genetics. 2006 Feb;172(2):751-7. doi: 10.1534/genetics.105.051136. Epub 2005 Nov 19.
6
Co-infection weakens selection against epistatic mutations in RNA viruses.
Genetics. 2004 Sep;168(1):9-19. doi: 10.1534/genetics.104.030205.
8
Evolution by small steps and rugged landscapes in the RNA virus phi6.
Genetics. 1999 Mar;151(3):921-7. doi: 10.1093/genetics/151.3.921.
9
Dominance effects of deleterious and beneficial mutations in a single gene of the RNA virus ϕ6.
PLoS One. 2014 Jun 19;9(6):e97717. doi: 10.1371/journal.pone.0097717. eCollection 2014.
10
Simple genomes, complex interactions: epistasis in RNA virus.
Chaos. 2010 Jun;20(2):026106. doi: 10.1063/1.3449300.

引用本文的文献

1
Advancing RNA phage biology through meta-omics.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf314.
3
Efficient epistasis inference via higher-order covariance matrix factorization.
bioRxiv. 2024 Oct 14:2024.10.14.618287. doi: 10.1101/2024.10.14.618287.
4
Experimental Evolution Studies in Φ6 Cystovirus.
Viruses. 2024 Jun 18;16(6):977. doi: 10.3390/v16060977.
5
The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike.
Methods Microbiol. 2022;50:27-81. doi: 10.1016/bs.mim.2021.10.002. Epub 2021 Nov 15.
6
Characterization of phage evolution and phage resistance in drug-resistant .
J Virol. 2024 Feb 20;98(2):e0124923. doi: 10.1128/jvi.01249-23. Epub 2024 Jan 8.
7
Co-expression of distinct L1 retrotransposon coiled coils can lead to their entanglement.
Mob DNA. 2023 Oct 20;14(1):16. doi: 10.1186/s13100-023-00303-8.
8
Genetic Bases of Complex Traits: From Quantitative Trait Loci to Prediction.
Methods Mol Biol. 2022;2467:1-44. doi: 10.1007/978-1-0716-2205-6_1.
9
Searching for a mechanistic description of pairwise epistasis in protein systems.
Proteins. 2022 Jul;90(7):1474-1485. doi: 10.1002/prot.26328. Epub 2022 Mar 11.
10
Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p.
PLoS Genet. 2020 Aug 14;16(8):e1008991. doi: 10.1371/journal.pgen.1008991. eCollection 2020 Aug.

本文引用的文献

2
Bacteriophage phi6: a Lipid-Containing Virus of Pseudomonas phaseolicola.
J Virol. 1973 May;11(5):799-805. doi: 10.1128/JVI.11.5.799-805.1973.
3
Selection for an invariant character; vibrissa number in the house mouse.
Nature. 1958 Apr 5;181(4614):1018-9. doi: 10.1038/1811018a0.
4
Stability in development and relational balance of X-chromosomes in Drosophila melanogaster.
Nature. 1954 Dec 11;174(4441):1109-10. doi: 10.1038/1741109a0.
5
Evolutionary capacitance as a general feature of complex gene networks.
Nature. 2003 Jul 31;424(6948):549-52. doi: 10.1038/nature01765.
7
RNA virus error catastrophe: direct molecular test by using ribavirin.
Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6895-900. doi: 10.1073/pnas.111085598. Epub 2001 May 22.
9
10
A test for epistasis among induced mutations in Caenorhabditis elegans.
Genetics. 2000 Dec;156(4):1635-47. doi: 10.1093/genetics/156.4.1635.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验