Suppr超能文献

现有宿主范围突变限制了 RNA 病毒的进一步出现。

Existing Host Range Mutations Constrain Further Emergence of RNA Viruses.

机构信息

Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, Newark, New Jersey, USA.

Department of Biology, Brooklyn College, Brooklyn, New York, USA.

出版信息

J Virol. 2019 Feb 5;93(4). doi: 10.1128/JVI.01385-18. Print 2019 Feb 15.

Abstract

RNA viruses are capable of rapid host shifting, typically due to a point mutation that confers expanded host range. As additional point mutations are necessary for further expansions, epistasis among host range mutations can potentially affect the mutational neighborhood and frequency of niche expansion. We mapped the mutational neighborhood of host range expansion using three genotypes of the double-stranded RNA (dsRNA) bacteriophage φ6 (wild type and two isogenic host range mutants) on the novel host pv. atrofaciens. Both Sanger sequencing of 50 pv. atrofaciens mutant clones for each genotype and population Illumina sequencing revealed the same high-frequency mutations allowing infection of pv. atrofaciens. Wild-type φ6 had at least nine different ways of mutating to enter the novel host, eight of which are in p3 (host attachment protein gene), and 13/50 clones had unchanged p3 genes. However, the two isogenic mutants had dramatically restricted neighborhoods: only one or two mutations, all in p3. Deep sequencing revealed that wild-type clones without mutations in p3 likely had changes in p12 (morphogenic protein), a region that was not polymorphic for the two isogenic host range mutants. Sanger sequencing confirmed that 10/13 of the wild-type φ6 clones had nonsynonymous mutations in p12, and 2 others had point mutations in p9 and p5. None of these genes had previously been associated with host range expansion in φ6. We demonstrate, for the first time, epistatic constraint in an RNA virus due to host range mutations themselves, which has implications for models of serial host range expansion. RNA viruses mutate rapidly and frequently expand their host ranges to infect novel hosts, leading to serial host shifts. Using an RNA bacteriophage model system ( phage φ6), we studied the impact of preexisting host range mutations on another host range expansion. Results from both clonal Sanger and Illumina sequencing show that extant host range mutations dramatically narrow the neighborhood of potential host range mutations compared to that of wild-type φ6. This research suggests that serial host-shifting viruses may follow a small number of molecular paths to enter additional novel hosts. We also identified new genes involved in φ6 host range expansion, expanding our knowledge of this important model system in experimental evolution.

摘要

RNA 病毒能够快速地进行宿主转移,这通常是由于一个点突变赋予了它们更广泛的宿主范围。由于进一步的扩展需要更多的点突变,宿主范围突变之间的上位性可能会影响生态位扩展的突变邻域和频率。我们使用双链 RNA (dsRNA) 噬菌体 φ6 的三个基因型(野生型和两个同源宿主范围突变体)在新宿主 pv.atrofaciens 上绘制了宿主范围扩展的突变邻域。对每个基因型的 50 个 pv.atrofaciens 突变体克隆进行 Sanger 测序和群体 Illumina 测序,都揭示了相同的高频突变,使噬菌体 φ6 能够感染 pv.atrofaciens。野生型 φ6 至少有九种不同的突变方式进入新宿主,其中八种位于 p3(宿主附着蛋白基因),在 50 个克隆中有 13 个克隆的 p3 基因没有变化。然而,两个同源突变体的突变邻域明显受到限制:只有一个或两个突变,都在 p3 中。深度测序表明,野生型克隆中没有 p3 突变的,可能在 p12(形态发生蛋白)区域发生了变化,而该区域在两个同源宿主范围突变体中没有多态性。Sanger 测序证实,在 10/13 个野生型 φ6 克隆中 p12 有非同义突变,另外 2 个克隆在 p9 和 p5 中有点突变。这些基因以前都没有与 φ6 的宿主范围扩展有关。我们首次证明了 RNA 病毒由于宿主范围突变本身而产生的上位性限制,这对连续宿主范围扩展的模型有影响。RNA 病毒快速突变并经常扩大其宿主范围以感染新宿主,从而导致连续的宿主转移。使用 RNA 噬菌体模型系统(噬菌体 φ6),我们研究了现有宿主范围突变对另一个宿主范围扩展的影响。来自克隆 Sanger 和 Illumina 测序的结果表明,与野生型 φ6 相比,现有的宿主范围突变大大缩小了潜在宿主范围突变的突变邻域。这项研究表明,连续进行宿主转移的病毒可能会沿着少数几个分子途径进入额外的新宿主。我们还鉴定了新的参与 φ6 宿主范围扩展的基因,扩展了我们在实验进化中对这一重要模型系统的认识。

相似文献

1
Existing Host Range Mutations Constrain Further Emergence of RNA Viruses.
J Virol. 2019 Feb 5;93(4). doi: 10.1128/JVI.01385-18. Print 2019 Feb 15.
2
Pleiotropic costs of niche expansion in the RNA bacteriophage phi 6.
Genetics. 2006 Feb;172(2):751-7. doi: 10.1534/genetics.105.051136. Epub 2005 Nov 19.
3
High frequency of mutations that expand the host range of an RNA virus.
Genetics. 2007 Jun;176(2):1013-22. doi: 10.1534/genetics.106.064634. Epub 2007 Apr 3.
4
Frequency and fitness consequences of bacteriophage φ6 host range mutations.
PLoS One. 2014 Nov 19;9(11):e113078. doi: 10.1371/journal.pone.0113078. eCollection 2014.
6
Experimental Evolution Studies in Φ6 Cystovirus.
Viruses. 2024 Jun 18;16(6):977. doi: 10.3390/v16060977.
8
Evolution of mutational robustness in an RNA virus.
PLoS Biol. 2005 Nov;3(11):e381. doi: 10.1371/journal.pbio.0030381. Epub 2005 Nov 1.
9
Microbial production of lipid-protein vesicles using enveloped bacteriophage phi6.
Microb Cell Fact. 2019 Feb 7;18(1):29. doi: 10.1186/s12934-019-1079-z.
10
Epistasis and its relationship to canalization in the RNA virus phi 6.
Genetics. 2004 Jun;167(2):559-67. doi: 10.1534/genetics.103.021196.

引用本文的文献

1
Emerging roles of extracellular vesicles in mediating RNA virus infection.
Fundam Res. 2021 Mar;1(2):179-185. doi: 10.1016/j.fmre.2021.02.005. Epub 2021 Feb 26.
2
Experimental Evolution Studies in Φ6 Cystovirus.
Viruses. 2024 Jun 18;16(6):977. doi: 10.3390/v16060977.
5
Viruses in astrobiology.
Front Microbiol. 2022 Oct 26;13:1032918. doi: 10.3389/fmicb.2022.1032918. eCollection 2022.
6
Developing an empirical model for spillover and emergence: Orsay virus host range in .
Proc Biol Sci. 2022 Sep 28;289(1983):20221165. doi: 10.1098/rspb.2022.1165. Epub 2022 Sep 21.
7
Variable routes to genomic and host adaptation among coronaviruses.
J Evol Biol. 2021 Jun;34(6):924-936. doi: 10.1111/jeb.13771. Epub 2021 Mar 10.
8
Variation Profile of the Orthotospovirus Genome.
Pathogens. 2020 Jun 29;9(7):521. doi: 10.3390/pathogens9070521.
9

本文引用的文献

2
3
Genetic variation in adaptability and pleiotropy in budding yeast.
Elife. 2017 Aug 17;6:e27167. doi: 10.7554/eLife.27167.
4
Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5148-E5157. doi: 10.1073/pnas.1704750114. Epub 2017 Jun 12.
5
Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change.
Evolution. 2017 Apr;71(4):872-883. doi: 10.1111/evo.13193. Epub 2017 Feb 14.
6
Spatiotemporal microbial evolution on antibiotic landscapes.
Science. 2016 Sep 9;353(6304):1147-51. doi: 10.1126/science.aag0822.
7
Tempo and mode of genome evolution in a 50,000-generation experiment.
Nature. 2016 Aug 11;536(7615):165-70. doi: 10.1038/nature18959. Epub 2016 Aug 1.
8
Impact of increased mutagenesis on adaptation to high temperature in bacteriophage Qβ.
Virology. 2016 Oct;497:163-170. doi: 10.1016/j.virol.2016.07.007. Epub 2016 Jul 27.
9
Antigenic diversification is correlated with increased thermostability in a mammalian virus.
Virology. 2016 Sep;496:203-214. doi: 10.1016/j.virol.2016.06.009. Epub 2016 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验