Yi Nengjun
Section on Statistical Genetics, Department of Biostatistics, University of Alabama, Birmingham, 35294-0022, USA.
Genetics. 2004 Jun;167(2):967-75. doi: 10.1534/genetics.104.026286.
In this article, a unified Markov chain Monte Carlo (MCMC) framework is proposed to identify multiple quantitative trait loci (QTL) for complex traits in experimental designs, based on a composite space representation of the problem that has fixed dimension. The proposed unified approach includes the existing Bayesian QTL mapping methods using reversible jump MCMC algorithm as special cases. We also show that a variety of Bayesian variable selection methods using Gibbs sampling can be applied to the composite model space for mapping multiple QTL. The unified framework not only results in some new algorithms, but also gives useful insight into some of the important factors governing the performance of Gibbs sampling and reversible jump for mapping multiple QTL. Finally, we develop strategies to improve the performance of MCMC algorithms.
在本文中,基于具有固定维度的问题的复合空间表示,提出了一个统一的马尔可夫链蒙特卡罗(MCMC)框架,用于在实验设计中识别复杂性状的多个数量性状基因座(QTL)。所提出的统一方法包括使用可逆跳跃MCMC算法的现有贝叶斯QTL定位方法作为特殊情况。我们还表明,使用吉布斯采样的各种贝叶斯变量选择方法可应用于复合模型空间以定位多个QTL。该统一框架不仅产生了一些新算法,而且还为控制吉布斯采样和可逆跳跃在定位多个QTL时性能的一些重要因素提供了有用的见解。最后,我们制定了提高MCMC算法性能的策略。