Suppr超能文献

用于三维数据库搜索的剪枝受体表面模型和药效基团。

Pruned receptor surface models and pharmacophores for three-dimensional database searching.

作者信息

Sutherland Jeffrey J, O'Brien Lee A, Weaver Donald F

机构信息

Departments of Chemistry and Pathology, Queen's University, Kingston, Ontario K7L 3N6, Canada.

出版信息

J Med Chem. 2004 Jul 15;47(15):3777-87. doi: 10.1021/jm049896z.

Abstract

A pharmacophore represents the 3D arrangement of chemical features that are shared by molecules exhibiting activity at a protein receptor. Pharmacophores are routinely used in 3D database searching for identifying potential lead compounds. The lack of shape constraints causes the query to identify compounds that could not fit into the active site. In the absence of structural information, a receptor surface model (RSM) can be used to represent the active site. The RSM consists of a surface that envelops a set of known actives after these have been aligned using their common features. When used for database searching, a RSM is overconstraining as it restricts access to regions that could be occupied by ligands, such as the solvent-protein interface or unexplored pockets. We describe a protocol for developing pruned RSMs using information gleaned from 3D quantitative structure-activity relationship (QSAR) models. We examined the performance of queries that consist of pharmacophores used alone or with pruned or unpruned RSMs by performing searches on six databases containing known actives distributed among inactives. The pruned RSMs yield an average selectivity 1.8 times greater than that for pharmacophore queries, compared to 1.6 times for unpruned RSMs. However, the pruned RSMs retrieve on average 73% of the actives identified using the pharmacophores, compared to 40% for the unpruned RSMs. As such, pruned RSMs represent a useful compromise between the high sensitivity of pharmacophores and the high selectivity of unpruned RSMs.

摘要

药效团代表在蛋白质受体上表现出活性的分子所共有的化学特征的三维排列。药效团常用于三维数据库搜索以识别潜在的先导化合物。缺乏形状约束会导致查询识别出无法适配活性位点的化合物。在缺乏结构信息的情况下,可以使用受体表面模型(RSM)来表示活性位点。RSM由一个表面组成,该表面在一组已知活性物质利用其共同特征进行对齐后将其包围。当用于数据库搜索时,RSM的约束过度,因为它限制了对可能被配体占据的区域的访问,例如溶剂 - 蛋白质界面或未探索的口袋。我们描述了一种使用从三维定量构效关系(QSAR)模型中收集的信息来开发修剪后的RSM的方案。我们通过在六个包含分布在非活性物质中的已知活性物质的数据库上进行搜索,研究了由单独使用的药效团或与修剪或未修剪的RSM一起使用的药效团组成的查询的性能。与未修剪RSM的1.6倍相比,修剪后的RSM产生的平均选择性比药效团查询高1.8倍。然而,与未修剪RSM的40%相比,修剪后的RSM平均检索出使用药效团识别出的73%的活性物质。因此,修剪后的RSM代表了药效团的高灵敏度和未修剪RSM的高选择性之间的一种有用折衷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验