Suppr超能文献

一种用于从已知药物或天然配体跳跃到新化学类型的支架的三维相似性方法。

A 3D similarity method for scaffold hopping from known drugs or natural ligands to new chemotypes.

作者信息

Jenkins Jeremy L, Glick Meir, Davies John W

机构信息

Lead Discovery Center, Novartis Institutes for BioMedical Research Inc., Cambridge, Massachusetts 02139, USA.

出版信息

J Med Chem. 2004 Dec 2;47(25):6144-59. doi: 10.1021/jm049654z.

Abstract

A primary goal of 3D similarity searching is to find compounds with similar bioactivity to a reference ligand but with different chemotypes, i.e., "scaffold hopping". However, an adequate description of chemical structures in 3D conformational space is difficult due to the high-dimensionality of the problem. We present an automated method that simplifies flexible 3D chemical descriptions in which clustering techniques traditionally used in data mining are exploited to create "fuzzy" molecular representations called FEPOPS (feature point pharmacophores). The representations can be used for flexible 3D similarity searching given one or more active compounds without a priori knowledge of bioactive conformations or pharmacophores. We demonstrate that similarity searching with FEPOPS significantly enriches for actives taken from in-house high-throughput screening datasets and from MDDR activity classes COX-2, 5-HT3A, and HIV-RT, while also scaffold or ring-system hopping to new chemical frameworks. Further, inhibitors of target proteins (dopamine 2 and retinoic acid receptor) are recalled by FEPOPS by scaffold hopping from their associated endogenous ligands (dopamine and retinoic acid). Importantly, the method excels in comparison to commonly used 2D similarity methods (DAYLIGHT, MACCS, Pipeline Pilot fingerprints) and a commercial 3D method (Pharmacophore Distance Triplets) at finding novel scaffold classes given a single query molecule.

摘要

三维相似性搜索的一个主要目标是找到与参考配体具有相似生物活性但化学类型不同的化合物,即“骨架跃迁”。然而,由于问题的高维度性,很难对三维构象空间中的化学结构进行充分描述。我们提出了一种自动化方法,该方法简化了灵活的三维化学描述,其中利用数据挖掘中传统使用的聚类技术来创建称为FEPOPS(特征点药效团)的“模糊”分子表示。这些表示可用于在没有生物活性构象或药效团先验知识的情况下,针对一种或多种活性化合物进行灵活的三维相似性搜索。我们证明,使用FEPOPS进行相似性搜索可显著富集从内部高通量筛选数据集以及MDDR活性类别COX-2、5-HT3A和HIV-RT中获取的活性物质,同时还能实现骨架或环系跃迁到新的化学框架。此外,FEPOPS通过从其相关内源性配体(多巴胺和视黄酸)进行骨架跃迁,召回了靶蛋白(多巴胺2和视黄酸受体)的抑制剂。重要的是,在给定单个查询分子的情况下,该方法在发现新型骨架类别方面优于常用的二维相似性方法(DAYLIGHT、MACCS、Pipeline Pilot指纹)和一种商业三维方法(药效团距离三联体)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验