Suppr超能文献

利用分枝杆菌直系同源物中的序列微差异分析大肠杆菌尿嘧啶-DNA糖基化酶的水激活环组氨酸在反应物结合和催化中的作用。

Use of sequence microdivergence in mycobacterial ortholog to analyze contributions of the water-activating loop histidine of Escherichia coli uracil-DNA glycosylase in reactant binding and catalysis.

作者信息

Acharya Narottam, Talawar Ramappa K, Purnapatre Kedar, Varshney Umesh

机构信息

Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India.

出版信息

Biochem Biophys Res Commun. 2004 Jul 30;320(3):893-9. doi: 10.1016/j.bbrc.2004.06.032.

Abstract

Uracil-DNA glycosylase (Ung), a DNA repair enzyme, pioneers uracil excision repair pathway. Structural determinations and mutational analyses of the Ung class of proteins have greatly facilitated our understanding of the mechanism of uracil excision from DNA. More recently, a hybrid quantum-mechanical/molecular mechanical analysis revealed that while the histidine (H67 in EcoUng) of the GQDPYH motif (omega loop) in the active site pocket is important in positioning the reactants, it makes an unfavorable energetic contribution (penalty) in achieving the transition state intermediate. Mutational analysis of this histidine is unavailable from any of the Ung class of proteins. A complication in demonstrating negative role of a residue, especially when located within the active site pocket, is that the mutants with enhanced activity are rarely obtained. Interestingly, unlike the most Ung proteins, the H67 equivalent in the omega loop in mycobacterial Ung is represented by P67. Exploiting this natural diversity to maintain structural integrity of the active site, we transplanted an H67P mutation in EcoUng. Uracil inhibition assays and binding of a proteinaceous inhibitor, Ugi (a transition state substrate mimic), with the mutant (H67P) revealed that its active site pocket was not perturbed. The catalytic efficiency (Vmax/Km) of the mutant was similar to that of the wild type Ung. However, the mutant showed increased Km and Vmax. Together with the data from a double mutation H67P/G68T, these observations provide the first biochemical evidence for the proposed diverse roles of H67 in catalysis by Ung.

摘要

尿嘧啶-DNA糖基化酶(Ung)是一种DNA修复酶,开创了尿嘧啶切除修复途径。对Ung类蛋白质的结构测定和突变分析极大地促进了我们对从DNA中切除尿嘧啶机制的理解。最近,一项量子力学/分子力学混合分析表明,虽然活性位点口袋中GQDPYH基序(ω环)的组氨酸(EcoUng中的H67)在定位反应物方面很重要,但它在实现过渡态中间体时会产生不利的能量贡献(代价)。从任何Ung类蛋白质中都无法获得对该组氨酸的突变分析。证明一个残基的负面作用存在复杂性,特别是当它位于活性位点口袋内时,因为很少能获得具有增强活性的突变体。有趣的是,与大多数Ung蛋白质不同,分枝杆菌Ung的ω环中与H67等效的是P67。利用这种自然多样性来维持活性位点的结构完整性,我们在EcoUng中移植了H67P突变。尿嘧啶抑制试验以及一种蛋白质抑制剂Ugi(一种过渡态底物模拟物)与突变体(H67P)的结合表明其活性位点口袋未受干扰。突变体的催化效率(Vmax/Km)与野生型Ung相似。然而,突变体的Km和Vmax增加。结合双突变H67P/G68T的数据,这些观察结果为H67在Ung催化中所提出的多种作用提供了首个生化证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验