Suppr超能文献

大肠杆菌C-C水解酶MhpC的催化机制:His263和Ser110定点突变体的动力学分析

Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants.

作者信息

Li Chen, Montgomery Mark G, Mohammed Fiyaz, Li Jian-Jun, Wood Stephen P, Bugg Timothy D H

机构信息

Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.

出版信息

J Mol Biol. 2005 Feb 11;346(1):241-51. doi: 10.1016/j.jmb.2004.11.032. Epub 2004 Dec 13.

Abstract

C-C hydrolase MhpC (2-hydroxy-6-keto-nona-1,9-dioic acid 5,6-hydrolase) from Escherichia coli catalyses the hydrolytic C-C cleavage of the meta-ring fission product on the phenylpropionic acid catabolic pathway. The crystal structure of E. coli MhpC has revealed a number of active-site amino acid residues that may participate in catalysis. Site-directed mutants of His263, Ser110, His114, and Ser40 have been analysed using steady-state and stopped-flow kinetics. Mutants H263A, S110A and S110G show 10(4)-fold reduced catalytic efficiency, but still retain catalytic activity for C-C cleavage. Two distinct steps are observed by stopped-flow UV/Vis spectrophotometry, corresponding to ketonisation and C-C cleavage: H263A exhibits very slow ketonisation and C-C cleavage, whereas S110A and S110G exhibit fast ketonisation, an intermediate phase, and slow C-C cleavage. H114A shows only twofold-reduced catalytic efficiency, ruling out a catalytic role, but shows a fivefold-reduced K(M) for the natural substrate, and an ability to process an aryl-containing substrate, implying a role for His114 in positioning of the substrate. S40A shows only twofold-reduced catalytic efficiency, but shows a very fast (500 s(-1)) interconversion of dienol (317 nm) to dienolate (394 nm) forms of the substrate, indicating that the enzyme accepts the dienol form of the substrate. These data imply that His263 is responsible for both ketonisation of the substrate and for deprotonation of water for C-C cleavage, a novel catalytic role in a serine hydrolase. Ser110 has an important but non-essential role in catalysis, which appears not to be to act as a nucleophile. A catalytic mechanism is proposed involving stabilisation of reactive intermediates and activation of a nucleophilic water molecule by Ser110.

摘要

来自大肠杆菌的C-C水解酶MhpC(2-羟基-6-酮基-壬-1,9-二酸5,6-水解酶)催化苯丙酸分解代谢途径中间环裂变产物的C-C水解裂解。大肠杆菌MhpC的晶体结构揭示了一些可能参与催化的活性位点氨基酸残基。已使用稳态和停流动力学分析了His263、Ser110、His114和Ser40的定点突变体。突变体H263A、S110A和S110G的催化效率降低了10^4倍,但仍保留C-C裂解的催化活性。通过停流紫外/可见分光光度法观察到两个不同的步骤,分别对应于酮化和C-C裂解:H263A表现出非常缓慢的酮化和C-C裂解,而S110A和S110G表现出快速的酮化、一个中间阶段和缓慢的C-C裂解。H114A的催化效率仅降低了两倍,排除了其催化作用,但对天然底物的K(M)降低了五倍,并且能够处理含芳基的底物,这意味着His114在底物定位中起作用。S40A的催化效率仅降低了两倍,但显示底物的二烯醇(317nm)形式向烯醇化物(394nm)形式的非常快速(500s^(-1))的相互转化,表明该酶接受底物的二烯醇形式。这些数据表明His263负责底物的酮化以及用于C-C裂解的水的去质子化,这在丝氨酸水解酶中是一种新的催化作用。Ser110在催化中具有重要但非必需的作用,其似乎不是作为亲核试剂起作用。提出了一种催化机制,涉及反应中间体的稳定以及Ser110对亲核水分子的激活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验