Suppr超能文献

乳酸乳球菌中甘露醇生产的代谢工程:不同遗传背景下1-磷酸甘露醇脱氢酶过表达的影响

Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

作者信息

Wisselink H Wouter, Mars Astrid E, van der Meer Pieter, Eggink Gerrit, Hugenholtz Jeroen

机构信息

Wageningen Centre for Food Sciences, Wageningen University and Research Centre-Agrotechnology and Food Innovations, Ede, The Netherlands.

出版信息

Appl Environ Microbiol. 2004 Jul;70(7):4286-92. doi: 10.1128/AEM.70.7.4286-4292.2004.

Abstract

To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

摘要

为获得一株产甘露醇的乳酸乳球菌菌株,将来自植物乳杆菌的磷酸甘露醇脱氢酶基因(mtlD)在野生型菌株、乳酸脱氢酶(LDH)缺陷型菌株和磷酸果糖激酶活性降低的菌株中过表达。高效液相色谱和(13)C核磁共振分析表明,过表达mtlD的LDH缺陷型和磷酸果糖激酶降低型菌株的生长细胞形成了少量(<1%)的甘露醇,而LDH缺陷型转化体的静息细胞将25%的葡萄糖转化为甘露醇。此外,在葡萄糖耗尽时,形成的甘露醇不会被再利用。在这项工作中研究的代谢工程策略中,过表达mtlD的LDH缺陷型乳酸乳球菌似乎是最有前景的甘露醇生产菌株。

相似文献

2
Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis.
Appl Environ Microbiol. 2005 Mar;71(3):1507-14. doi: 10.1128/AEM.71.3.1507-1514.2005.
3
Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR.
Eur J Biochem. 2000 Jun;267(12):3859-68. doi: 10.1046/j.1432-1327.2000.01424.x.
5
Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase.
Microbiology (Reading). 2002 Nov;148(Pt 11):3467-3476. doi: 10.1099/00221287-148-11-3467.
6
High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering.
Appl Environ Microbiol. 2007 Mar;73(6):1864-72. doi: 10.1128/AEM.02304-06. Epub 2007 Jan 19.
7
An extended dynamic model of Lactococcus lactis metabolism for mannitol and 2,3-butanediol production.
Mol Biosyst. 2014 Mar 4;10(3):628-39. doi: 10.1039/c3mb70265k. Epub 2014 Jan 13.
8
High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.
Appl Environ Microbiol. 2011 Oct;77(19):6826-35. doi: 10.1128/AEM.05544-11. Epub 2011 Aug 12.
10
Harnessing Adaptive Evolution to Achieve Superior Mannitol Production by Using Its Native Metabolism.
J Agric Food Chem. 2020 Apr 29;68(17):4912-4921. doi: 10.1021/acs.jafc.0c00532. Epub 2020 Apr 17.

引用本文的文献

2
Genome Insights of the Plant-Growth Promoting Bacterium JZ38 With Volatile-Mediated Antagonistic Activity Against .
Front Microbiol. 2020 Mar 11;11:369. doi: 10.3389/fmicb.2020.00369. eCollection 2020.
3
Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.
PLoS One. 2012;7(4):e36296. doi: 10.1371/journal.pone.0036296. Epub 2012 Apr 27.
4
High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.
Appl Environ Microbiol. 2011 Oct;77(19):6826-35. doi: 10.1128/AEM.05544-11. Epub 2011 Aug 12.
6
High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering.
Appl Environ Microbiol. 2007 Mar;73(6):1864-72. doi: 10.1128/AEM.02304-06. Epub 2007 Jan 19.
7
Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis.
Appl Environ Microbiol. 2005 Mar;71(3):1507-14. doi: 10.1128/AEM.71.3.1507-1514.2005.

本文引用的文献

2
Complete genome sequence of Lactobacillus plantarum WCFS1.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1990-5. doi: 10.1073/pnas.0337704100. Epub 2003 Feb 3.
3
Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase.
Microbiology (Reading). 2002 Nov;148(Pt 11):3467-3476. doi: 10.1099/00221287-148-11-3467.
4
5
Mannitol Protects against Oxidation by Hydroxyl Radicals.
Plant Physiol. 1997 Oct;115(2):527-532. doi: 10.1104/pp.115.2.527.
9
Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR.
Eur J Biochem. 2000 Jun;267(12):3859-68. doi: 10.1046/j.1432-1327.2000.01424.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验