Lee Seok-Yong, MacKinnon Roderick
The Howard Hughes Medical Institute and Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
Nature. 2004 Jul 8;430(6996):232-5. doi: 10.1038/nature02632.
Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane-protein interface.
有毒动物会产生小的蛋白质毒素,这些毒素能以高亲和力抑制离子通道。在几个经过充分研究的案例中,抑制性蛋白质是水溶性的,并结合在通道暴露于水相的细胞外表面。在这里,我们展示了来自智利玫瑰捕鸟蛛(Grammostola spatulata)的一种电压传感器毒素(VSTX1)通过分配进入脂质膜到达其靶点。脂质膜分配有两个作用:将毒素定位在电压传感器所在的膜中,并利用分配的自由能实现明显的高亲和力抑制。VSTX1、小的疏水性毒物和麻醉分子揭示了通过脂质膜进入来抑制电压传感器的一个共同主题。对这种进入方式的明显需求与最近提出的电压依赖性钾通道中的传感器位于膜 - 蛋白界面的观点一致。