Suppr超能文献

Controlled ultrasound tissue erosion.

作者信息

Xu Zhen, Ludomirsky Achiau, Eun Lucy Y, Hall Timothy L, Tran Binh C, Fowlkes J Brian, Cain Charles A

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jun;51(6):726-36. doi: 10.1109/tuffc.2004.1308731.

Abstract

The ability of ultrasound to produce highly controlled tissue erosion was investigated. This study is motivated by the need to develop a noninvasive procedure to perforate the neonatal atrial septum as the first step in treatment of hypoplastic left heart syndrome. A total of 232 holes were generated in 40 pieces of excised porcine atrial wall by a 788 kHz single-element transducer. The effects of various parameters [e.g., pulse repetition frequency (PRF), pulse duration (PD), and gas content of liquid] on the erosion rate and energy efficiency were explored. An Isppa of 9000 W/cm2, PDs of 3, 6, 12, and 24 cycles; PRFs between 1.34 kHz and 66.7 kHz; and gas saturation of 40-55% and 79-85% were used. The results show that very short pulses delivered at certain PRFs could maximize the erosion rate and energy efficiency. We show that well-defined perforations can be precisely located in the atrial wall through the controlled ultrasound tissue erosion (CUTE) process. A preliminary in vivo experiment was conducted on a canine subject, and the atrial septum was perforated using CUTE.

摘要

相似文献

1
Controlled ultrasound tissue erosion.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jun;51(6):726-36. doi: 10.1109/tuffc.2004.1308731.
2
Investigation of intensity thresholds for ultrasound tissue erosion.
Ultrasound Med Biol. 2005 Dec;31(12):1673-82. doi: 10.1016/j.ultrasmedbio.2005.07.016.
3
A new strategy to enhance cavitational tissue erosion using a high-intensity, Initiating sequence.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Aug;53(8):1412-24. doi: 10.1109/tuffc.2006.1665098.
6
Noninvasive creation of an atrial septal defect by histotripsy in a canine model.
Circulation. 2010 Feb 16;121(6):742-9. doi: 10.1161/CIRCULATIONAHA.109.889071. Epub 2010 Feb 1.
8
Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material.
Ultrasonics. 2018 Mar;84:296-309. doi: 10.1016/j.ultras.2017.11.012. Epub 2017 Nov 22.
10
Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound.
J Neurosurg. 2013 May;118(5):1035-45. doi: 10.3171/2012.12.JNS121095. Epub 2013 Jan 18.

引用本文的文献

1
Histotripsy: Recent Advances, Clinical Applications, and Future Prospects.
Cancers (Basel). 2025 Sep 19;17(18):3072. doi: 10.3390/cancers17183072.
3
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer.
Cancers (Basel). 2025 Aug 1;17(15):2548. doi: 10.3390/cancers17152548.
4
Development of Histotripsy as a Local-Regional Liver Cancer Therapy: Preclinical to Clinical Translation.
Radiol Imaging Cancer. 2025 Jul;7(4):e240403. doi: 10.1148/rycan.240403.
5
Fracture and Fragmentation of Vascular Calcifications by Focused Ultrasound.
J Cardiovasc Transl Res. 2025 Apr 21. doi: 10.1007/s12265-025-10611-4.
6
MR-Cavitation Dynamics Encoded (MR-CaDE) imaging.
Magn Reson Med. 2025 Aug;94(2):665-677. doi: 10.1002/mrm.30517. Epub 2025 Apr 7.
7
Chirp-Coded Subharmonic Imaging With Volterra Filtering: Histotripsy Bubble Cloud Assessment In Vitro and Ex Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 May;72(5):591-600. doi: 10.1109/TUFFC.2025.3556030. Epub 2025 May 7.
8
Neutrophil extracellular traps in tumor progression of gynecologic cancers.
Front Immunol. 2024 Nov 1;15:1421889. doi: 10.3389/fimmu.2024.1421889. eCollection 2024.
9
Focal Volume, Acoustic Radiation Force, and Strain in Two-Transducer Regimes.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Oct;71(10):1199-1216. doi: 10.1109/TUFFC.2024.3456048. Epub 2024 Oct 10.
10
Ultrasonic Nakagami imaging for automatically positioning and identifying the treated lesion induced by histotripsy.
Ultrason Sonochem. 2024 Oct;109:107002. doi: 10.1016/j.ultsonch.2024.107002. Epub 2024 Jul 25.

本文引用的文献

1
Thermal dose optimization for ultrasound tissue ablation.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(4):913-28. doi: 10.1109/58.775658.
2
Microbubble-enhanced cavitation for noninvasive ultrasound surgery.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Oct;50(10):1296-304. doi: 10.1109/tuffc.2003.1244746.
3
Cytokine release from osteoblasts in response to ultrasound stimulation.
Biomaterials. 2003 Jun;24(13):2379-85. doi: 10.1016/s0142-9612(03)00033-4.
5
A new direction for ultrasound therapy in sports medicine.
Sports Med. 2003;33(2):95-107. doi: 10.2165/00007256-200333020-00002.
6
Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound.
J Bone Miner Res. 2003 Feb;18(2):360-9. doi: 10.1359/jbmr.2003.18.2.360.
7
The effect of pulsed ultrasound on mandibular distraction.
Ann Biomed Eng. 2002 Nov-Dec;30(10):1251-61. doi: 10.1114/1.1529196.
8
Influence of dissolved oxygen content on multibubble sonoluminescence with ambient-pressure reduction.
Ultrasonics. 2002 May;40(1-8):651-4. doi: 10.1016/s0041-624x(02)00192-0.
9
Thresholds for inertial cavitation in albunex suspensions under pulsed ultrasound conditions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jan;48(1):161-70. doi: 10.1109/58.895927.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验