Suppr超能文献

超声 Nakagami 成像用于自动定位和识别组织破碎术引起的治疗病变。

Ultrasonic Nakagami imaging for automatically positioning and identifying the treated lesion induced by histotripsy.

机构信息

School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China.

School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, People's Republic of China.

出版信息

Ultrason Sonochem. 2024 Oct;109:107002. doi: 10.1016/j.ultsonch.2024.107002. Epub 2024 Jul 25.

Abstract

Histotripsy has been proposed as a non-invasive surgical procedure for clinical use that liquefies the tissue into acellular debris by utilizing the mechanical mechanism of bubbles. Accurate and reliable imaging guidance is essential for successful clinical histotripsy implementation. Nakagami imaging is a promising method to evaluate the microstructural change induced by high intensity focused ultrasound. However, practically, it is difficult for the Nakagami imaging to distinguish the treated lesion induced by histotripsy from the surrounding normal biological tissues. In this study, we introduce the use of noise-assisted correlation algorithm (NCA) in Nakagami images as a solution to suppress the background normal tissue and identify the treated lesion induced by histotripsy. Experiments are conducted on fresh porcine liver ex vivo by cavitation-cloud histotripsy. Results show that the contrast-to-noise ratio between the treated lesion and surrounding tissue corresponding to the Nakagami image after NCA and original Nakagami image is 3.434 and 0.505, respectively. The optimal artificial noise level is 1-fold of the background normal tissue amplitude, and the corresponding optimal threshold of correlation coefficient should be between 0.6 and 0.8 in the application of NCA. Therefore, the use of NCA in Nakagami image can suppress the background normal tissues without affecting the information of treated lesion for an appropriate artificial noise level and threshold used in the NCA. Moreover, the Nakagami images after the application of the NCA can also be used for automatically distinguishing and measuring the tissue fractionation accurately using binarization. The proposed Nakagami images overlaid on the B-mode images can provide a promising method for positioning and visualizing the treated lesion to achieve precise histotripsy treatment.

摘要

组织微爆破已被提议作为一种非侵入性的手术程序用于临床,通过利用气泡的机械机制将组织液化成无细胞碎片。准确可靠的成像引导对于成功实施临床组织微爆破至关重要。Nakagami 成像是评估高强度聚焦超声引起的微观结构变化的一种很有前途的方法。然而,实际上,Nakagami 成像很难将组织微爆破引起的治疗病变与周围正常生物组织区分开来。在这项研究中,我们引入了噪声辅助相关算法(NCA)在 Nakagami 图像中的应用,以抑制背景正常组织并识别组织微爆破引起的治疗病变。实验在新鲜猪离体肝上通过空化云组织微爆破进行。结果表明,NCA 处理前后 Nakagami 图像中治疗病变与周围组织之间的对比噪声比分别为 3.434 和 0.505。最佳人工噪声水平是背景正常组织幅度的 1 倍,在 NCA 的应用中,相关系数的最佳阈值应在 0.6 到 0.8 之间。因此,在适当的人工噪声水平和阈值下,NCA 在 Nakagami 图像中的应用可以抑制背景正常组织,而不会影响治疗病变的信息。此外,应用 NCA 后的 Nakagami 图像也可以用于自动区分和准确测量组织分割,使用二值化进行定量分析。叠加在 B 模式图像上的 Nakagami 图像可以为定位和可视化治疗病变提供一种有前途的方法,以实现精确的组织微爆破治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4c4/11384263/9ef49055cdf2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验