Suppr超能文献

随机孔隙中混合物的复制奥恩斯坦-泽尼克自洽理论。

Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.

作者信息

Pellicane G, Caccamo C, Wilson D S, Lee L L

机构信息

Dipartimento di Fisica, Università di Messina and Istituto Nazionale per la Fisica della Materia (INFM), Messina, Italy.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061202. doi: 10.1103/PhysRevE.69.061202. Epub 2004 Jun 4.

Abstract

We present a self-consistent integral equation theory for a binary liquid in equilibrium with a disordered medium, based on the formalism of the replica Ornstein-Zernike (ROZ) equations. Specifically, we derive direct formulas for the chemical potentials and the zero-separation theorems (the latter provide a connection between the chemical potentials and the fluid cavity distribution functions). Next we solve a modified-Verlet closure to ROZ equations, which has built-in parameters that can be adjusted to satisfy the zero-separation theorems. The degree of thermodynamic consistency of the theory is also kept under control. We model the binary fluid in random pores as a symmetrical binary mixture of nonadditive hard spheres in a disordered hard-sphere matrix and consider two different values of the nonadditivity parameter and of the quenched matrix packing fraction, at different mixture concentrations. We compare the theoretical structural properties as obtained through the present approach with Percus-Yevick and Martinov-Sarkisov integral equation theories, and assess both structural and thermodynamic properties by performing canonical standard and biased grand canonical Monte Carlo simulations. Our theory appears superior to the other integral equation schemes here examined and provides reliable estimates of the chemical potentials. This feature should be useful in studying the fluid phase behavior of model adsorbates in random pores in general.

摘要

我们基于复制奥恩斯坦 - 泽尔尼克(ROZ)方程的形式体系,提出了一种用于二元液体与无序介质处于平衡状态的自洽积分方程理论。具体而言,我们推导了化学势的直接公式以及零分离定理(后者建立了化学势与流体空穴分布函数之间的联系)。接下来,我们求解了ROZ方程的修正维莱特封闭形式,该形式具有可调整以满足零分离定理的内置参数。该理论的热力学一致性程度也得到了控制。我们将随机孔中的二元流体建模为无序硬球矩阵中不可加和硬球的对称二元混合物,并在不同的混合浓度下考虑不可加和参数和淬火基质填充率的两个不同值。我们将通过本方法获得的理论结构性质与珀库斯 - 耶维克和马尔蒂诺夫 - 萨尔基索夫积分方程理论进行比较,并通过进行正则标准和有偏广义正则蒙特卡罗模拟来评估结构和热力学性质。我们的理论在此处研究的其他积分方程方案中显得更为优越,并提供了可靠的化学势估计。这一特性在一般研究随机孔中模型吸附质的流体相行为时应该是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验