Suppr超能文献

随机多孔介质中的玫瑰水:关联复制奥恩斯坦-泽尔尼克理论研究。

Rose water in random porous media: Associative replica Ornstein-Zernike theory study.

作者信息

Ogrin Peter, Urbic Tomaz

机构信息

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia.

出版信息

J Mol Liq. 2022 Dec 15;368(Pt A). doi: 10.1016/j.molliq.2022.120682. Epub 2022 Oct 28.

Abstract

The properties of water are vastly affected by its local environment or in other words the system in which water is present. There are many systems in which water is confined in pores of different sizes and shapes. We studied the system in which porous media consisted of quenched Lennard-Jones disks and water modelled as rose water which was allowed to move inside pores. Associative replica Ornstein-Zernike theory was used to calculate the properties of the system. The accuracy of the theory under different conditions was tested against Monte Carlo simulations. The advantage of the theory is that it is magnitudes faster than computer simulations. From pair distribution functions calculated with the theory, the effects of different conditions on the structure of the system was investigated. We also studied how different conditions such as fluid temperature, fluid density, matrix density and matrix particle size affect a fraction of bonded molecules, excess internal energy and isothermal compressibility.

摘要

水的性质会受到其局部环境的极大影响,换句话说,就是水所处的系统会对其性质产生极大影响。在许多系统中,水被限制在不同大小和形状的孔隙中。我们研究了这样一个系统,其中多孔介质由淬火的 Lennard-Jones 圆盘组成,而水则被模拟为玫瑰水,允许其在孔隙内移动。使用关联复制奥恩斯坦-泽尔尼克理论来计算该系统的性质。针对蒙特卡罗模拟测试了该理论在不同条件下的准确性。该理论的优势在于它比计算机模拟快几个数量级。根据用该理论计算出的对分布函数,研究了不同条件对系统结构的影响。我们还研究了诸如流体温度、流体密度、基质密度和基质颗粒大小等不同条件如何影响键合分子的比例、过剩内能和等温压缩率。

相似文献

3
Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.随机孔隙中混合物的复制奥恩斯坦-泽尼克自洽理论。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061202. doi: 10.1103/PhysRevE.69.061202. Epub 2004 Jun 4.
7
Test particle limit for the pair structure of quenched-annealed fluid mixtures.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031405. doi: 10.1103/PhysRevE.79.031405. Epub 2009 Mar 25.

本文引用的文献

1
6
Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.随机孔隙中混合物的复制奥恩斯坦-泽尼克自洽理论。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061202. doi: 10.1103/PhysRevE.69.061202. Epub 2004 Jun 4.
7
Partitioning of Polymerizing Fluids in Random Microporous Media: Application of the Replica Ornstein-Zernike Equations.
J Colloid Interface Sci. 1999 Mar 15;211(2):367-374. doi: 10.1006/jcis.1998.5999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验