Suppr超能文献

用于评估相干函数显著性的替代数据分析。

Surrogate data analysis for assessing the significance of the coherence function.

作者信息

Faes Luca, Pinna Gian Domenico, Porta Alberto, Maestri Roberto, Nollo Giandomenico

机构信息

Laboratorio Biosegnali, Dipartimento di Fisica, Università di Trento, and INFM, 38050 Povo, Trento, Italy.

出版信息

IEEE Trans Biomed Eng. 2004 Jul;51(7):1156-66. doi: 10.1109/TBME.2004.827271.

Abstract

In cardiovascular variability analysis, the significance of the coupling between two time series is commonly assessed by setting a threshold level in the coherence function. While traditionally used statistical tests consider only the parameters of the adopted estimator, the required zero-coherence level may be affected by some features of the observed series. In this study, three procedures, based on the generation of surrogate series sharing given properties with the original but being structurally uncoupled, were considered: independent identically distributed (IID), Fourier transform (FT), and autoregressive (AR). IID surrogates maintained the distribution of the original series, while FT and AR surrogates preserved the power spectrum. The ability of the three methods to define the threshold for zero coherence was validated and compared by computer simulations reproducing typical cardiovascular interactions. While the IID threshold depended only on record length and design parameters of the coherence estimator, FT and AR thresholds were frequency-dependent with peaks corresponding to the local maxima of the estimated coherence. FT and AR surrogates were able to compensate spurious coherence peaks due to equal-frequency but independent oscillations in the two series. The benefit of frequency-dependent thresholds was evident for short series with narrow-band oscillations. Thus, surrogates preserving the power spectrum of the original series are recommended to avoid false coupling detections in the presence of oscillations occurring at nearby frequencies but produced by different mechanisms, as may frequently happen in cardiovascular and cardiorespiratory regulation.

摘要

在心血管变异性分析中,两个时间序列之间耦合的显著性通常通过在相干函数中设置阈值水平来评估。虽然传统使用的统计检验仅考虑所采用估计器的参数,但所需的零相干水平可能会受到观测序列某些特征的影响。在本研究中,考虑了三种基于生成与原始序列具有给定属性但结构上不耦合的替代序列的方法:独立同分布(IID)、傅里叶变换(FT)和自回归(AR)。IID替代序列保持原始序列的分布,而FT和AR替代序列保留功率谱。通过再现典型心血管相互作用的计算机模拟,验证并比较了这三种方法定义零相干阈值的能力。虽然IID阈值仅取决于记录长度和相干估计器的设计参数,但FT和AR阈值与频率相关,其峰值对应于估计相干的局部最大值。FT和AR替代序列能够补偿由于两个序列中同频但独立振荡而产生的虚假相干峰值。对于具有窄带振荡的短序列,频率相关阈值的益处很明显。因此,建议使用保留原始序列功率谱的替代序列,以避免在存在由不同机制产生但频率相近的振荡时出现错误的耦合检测,这在心血管和心肺调节中可能经常发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验