文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

静息态功能磁共振成像的诊断潜力:统计学方面的问题。

The diagnostic potential of resting state functional MRI: Statistical concerns.

作者信息

Doubovikov Evan D, Aksenov Daniil P

机构信息

Department of Radiology, Endeavor Health, 2650 Ridge Ave, Evanston, IL 60201, USA.

Department of Radiology, Endeavor Health, 2650 Ridge Ave, Evanston, IL 60201, USA; Department of Anesthesiology, Endeavor Health, 2650 Ridge Ave, Evanston, IL 60201, USA; University of Chicago, Pritzker School of Medicine, 5841 S Maryland Ave, Chicago, IL 60637, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, E310, Evanston, IL 60208, USA.

出版信息

Neuroimage. 2025 Aug 15;317:121334. doi: 10.1016/j.neuroimage.2025.121334. Epub 2025 Jun 17.


DOI:10.1016/j.neuroimage.2025.121334
PMID:40554035
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12303613/
Abstract

Blood oxygen level-dependent functional magnetic resonance imaging (fMRI) is a widely used, non-invasive method to assess brain hemodynamics. Resting-state fMRI (rsfMRI) estimates functional connectivity (FC) by measuring correlations between the time courses of different brain regions. However, the reliability of rsfMRI FC is fundamentally compromised by statistical artifacts arising from signal cyclicity, autocorrelation, and preprocessing-induced distortions. We discuss how standard rsfMRI preprocessing -particularly the widely used band-pass filters such as 0.009-0.08 Hz and 0.01-0.10 Hz- introduce biases that increase correlation estimates between independent time series. Additionally, filtering without appropriate downsampling further distorts correlation coefficients, inflating statistical significance and increasing the risk of false positives. Under these conditions, commonly used multiple comparison corrections fail to fully control Type I errors, with up to 50-60 % of detected correlations in white noise signals remaining significant after correction depending on the sampling rate, filter and duration. To mitigate these biases, we recommend adjusting sampling rates to align with the analyzed frequency band and employing surrogate data methods that better account for the statistical properties of rsfMRI signals and reduce autocorrelation-driven false positives. Additionally, we show that structured brain states-such as epilepsy and anesthesia-induced burst suppression-impose low-frequency neural activity that further amplifies these biases, distorting FC estimates. These findings indicate that accepted rsfMRI preprocessing pipelines systematically amplify spurious correlations and call for an improved statistical framework. This framework must explicitly account for autocorrelation, cyclicity, and multiple comparison biases, while excluding or correcting for structured neural activity that further distorts connectivity estimates.

摘要

血氧水平依赖性功能磁共振成像(fMRI)是一种广泛应用的非侵入性方法,用于评估脑血流动力学。静息态fMRI(rsfMRI)通过测量不同脑区时间序列之间的相关性来估计功能连接(FC)。然而,rsfMRI功能连接的可靠性从根本上受到信号周期性、自相关性和预处理引起的失真所产生的统计伪影的影响。我们讨论了标准的rsfMRI预处理——特别是广泛使用的带通滤波器,如0.009 - 0.08Hz和0.01 - 0.10Hz——如何引入偏差,增加独立时间序列之间的相关性估计。此外,在没有适当下采样的情况下进行滤波会进一步扭曲相关系数,夸大统计显著性并增加假阳性风险。在这些条件下,常用的多重比较校正无法完全控制I型错误,根据采样率、滤波器和持续时间的不同,在白噪声信号中检测到的相关性在校正后仍有高达50 - 60%保持显著。为了减轻这些偏差,我们建议调整采样率以与分析的频段对齐,并采用替代数据方法,该方法能更好地考虑rsfMRI信号的统计特性并减少自相关驱动的假阳性。此外,我们表明结构化脑状态——如癫痫和麻醉诱导的爆发抑制——会施加低频神经活动,进一步放大这些偏差,扭曲功能连接估计。这些发现表明,公认的rsfMRI预处理流程会系统性地放大虚假相关性,并呼吁改进统计框架。这个框架必须明确考虑自相关性、周期性和多重比较偏差,同时排除或校正进一步扭曲连接估计的结构化神经活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/12303613/75cd2b6a6899/nihms-2096793-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/12303613/f40eeb32f6db/nihms-2096793-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/12303613/b50b2dab1df9/nihms-2096793-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/12303613/75cd2b6a6899/nihms-2096793-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/12303613/f40eeb32f6db/nihms-2096793-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/12303613/b50b2dab1df9/nihms-2096793-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/706a/12303613/75cd2b6a6899/nihms-2096793-f0003.jpg

相似文献

[1]
The diagnostic potential of resting state functional MRI: Statistical concerns.

Neuroimage. 2025-8-15

[2]
Short-Term Memory Impairment

2025-1

[3]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[4]
The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions.

Gigascience. 2017-2-1

[5]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[6]
A Method for Estimating Dynamic Functional Network Connectivity Gradients (dFNGs) From ICA Captures Smooth Inter-Network Modulation.

Hum Brain Mapp. 2025-7

[7]
Improving delay and strength maps derived from resting-state fMRI using PCA-based denoising and group data from the HCP dataset.

Comput Biol Med. 2025-6

[8]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[9]
Regional cerebral blood flow single photon emission computed tomography for detection of Frontotemporal dementia in people with suspected dementia.

Cochrane Database Syst Rev. 2015-6-23

[10]
Interventions for central serous chorioretinopathy: a network meta-analysis.

Cochrane Database Syst Rev. 2025-6-16

本文引用的文献

[1]
Structurally informed models of directed brain connectivity.

Nat Rev Neurosci. 2025-1

[2]
Psilocybin desynchronizes the human brain.

Nature. 2024-8

[3]
Testing dynamic correlations and nonlinearity in bivariate time series through information measures and surrogate data analysis.

Front Netw Physiol. 2024-5-21

[4]
Illusory generalizability of clinical prediction models.

Science. 2024-1-12

[5]
Granger Causality: A Review and Recent Advances.

Annu Rev Stat Appl. 2022-3

[6]
Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression.

Cells. 2023-9-7

[7]
Machine learning models for diagnosis and prognosis of Parkinson's disease using brain imaging: general overview, main challenges, and future directions.

Front Aging Neurosci. 2023-7-19

[8]
Excessive generalization of pain-related avoidance behavior: mechanisms, targets for intervention, and future directions.

Pain. 2023-11-1

[9]
Geometric constraints on human brain function.

Nature. 2023-6

[10]
Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators.

Neural Netw. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索