Yang Yan, Frankel Wayne N
The Jackson Laboratory, Bar Harbor, Maine, USA.
Adv Exp Med Biol. 2004;548:1-11. doi: 10.1007/978-1-4757-6376-8_1.
In conclusion, we have discussed a reverse genetics approach to studying seizure disorders in mice (Fig. 1), employing a targeted mutagenesis method to exploit the genetic defects identified in human epilepsy families. After detailed characterization of the nature of the human mutation and the mouse counterpart gene, a targeting vector containing the human disease allele is created. The endogenous mouse gene is replaced by the human disease allele through homologous recombination in ES cells, leading to the generation of chimeric animals. Mice carrying one copy or both copies of the human mutation can be bred to study the phenotypic effect of heterozygous and homozygous mutations. At this stage, one may want to split the newly created mice into two groups. One group will go through seizure phenotyping tests, while the other group will be used to generate disease allele-carrying mice on a different genetic background. Phenotypic characterization of mice on different inbred strains includes behavioral monitoring and EEG analysis looking for the occurrence of spontaneous seizures, as well as routine cage examination looking for handling-provoked seizure and ECT- and PTZ- induced seizure paradigms looking for sensitivity to these stimuli. A complete evaluation of the seizure phenotype at the whole-animal level establishes the relevance of the mouse model to the human condition. Further investigation including imaging, electrophysiology and AED response in these mouse models will shed light on the mechanistic basis of the convulsive disorder. Current epilepsy research in mouse genetics offers promise for understanding the molecular mechanisms that underlie epileptogenesis in humans. A large-scale forward genetic effort to create novel mouse mutants with seizure phenotypes by in vivo chemical mutagenesis with ethyl-nitroso urea (ENU) is underway at the Jackson Laboratory (http://www.jax.org/nmf/). Genetic mapping and isolation of the affected genes in these seizure-prone models will provide additional molecular pathways involved in seizures. The mutant mice generated through both forward and reverse genetic approaches will be a valuable resource for the biomedical community to study epilepsy at the molecular level and to characterize the pathological consequences of seizures in the whole organism.
总之,我们讨论了一种在小鼠中研究癫痫疾病的反向遗传学方法(图1),采用靶向诱变方法来利用在人类癫痫家族中鉴定出的遗传缺陷。在详细表征人类突变和小鼠对应基因的性质后,构建一个包含人类疾病等位基因的靶向载体。通过胚胎干细胞中的同源重组,内源性小鼠基因被人类疾病等位基因取代,从而产生嵌合体动物。携带一个或两个拷贝人类突变的小鼠可以进行繁殖,以研究杂合和纯合突变的表型效应。在此阶段,可能需要将新创建的小鼠分成两组。一组将进行癫痫表型测试,而另一组将用于在不同遗传背景下产生携带疾病等位基因的小鼠。对不同近交系小鼠的表型特征进行表征,包括行为监测和脑电图分析以寻找自发性癫痫的发生情况,以及常规笼内检查以寻找处理诱发的癫痫,以及电休克和戊四氮诱导的癫痫范式以寻找对这些刺激的敏感性。在全动物水平上对癫痫表型进行全面评估,确定了小鼠模型与人类疾病的相关性。在这些小鼠模型中进行的包括成像、电生理学和抗癫痫药物反应在内的进一步研究,将揭示惊厥性疾病的机制基础。目前在小鼠遗传学方面的癫痫研究为理解人类癫痫发生的分子机制带来了希望。杰克逊实验室(http://www.jax.org/nmf/)正在进行一项大规模的正向遗传学研究,通过用乙基亚硝基脲(ENU)进行体内化学诱变来创建具有癫痫表型的新型小鼠突变体。在这些易患癫痫的模型中对受影响基因进行遗传定位和分离,将提供与癫痫相关的其他分子途径。通过正向和反向遗传学方法产生的突变小鼠,将成为生物医学领域在分子水平研究癫痫以及在整个生物体中表征癫痫病理后果的宝贵资源。